VISION 2016:
A Blueprint for Quality Education in Health Information Management

September 24, 2007
Table of Contents

Executive Summary ..3
Preamble ..10
Introduction ..13
Background ..15
Academic Environment, Higher Education, and HIM Programs ..17
About the White Paper..25

Key Priority—Section A: Transformation of HIM to a Graduate-Level Profession by 2016 ..28
Key Priority—Section B: Realign the HIM Associate Degree with Work Force Needs by 2016 ..53
Key Priority—Section C: Prepare an Effective, Qualified Pool of HIM Faculty by 2016 ..72
Appendices ..91

Acknowledgements

The 2006-2007 HIM Education Strategy Committee

Carol Ann D. Wilhelm, MPH, RHIA, Chair
Mervat N. Abdelhak, PhD, RHIA, FAHIMA
Carol A. Campbell, DBA, RHIA
Gerald L. Glandon, PhD
William Hersh, MD
Ellen B. Jacobs, M.Ed., RHIA
Donald W. Kellogg, MS, RHIA
Angela Kennedy, MBA, RHIA, CPHQ, AHIMA Board Liaison
Carole L. Okamoto, MBA, RHIA, CPHQ
Laurie Rinehart-Thompson, JD, RHIA, CHP
Karen Jody Smith, PhD, RHIA, FAHIMA

The 2007 AHIMA Board of Directors

The 2007 Commission on Accreditation for Health Informatics and Information Management Education (CAHIIM)

The AHIMA Council on Certification

Other Contributors

Elizabeth D. Bowman, MPA, RHIA
Melanie S. Brodnik, PhD, RHIA
Jeanne M. Donnelly, PhD, RHIA
Mary C. McCain, MPA, RHIA
Rebecca B. Reynolds, MPA, RHIA

AHIMA Staff

Claire Dixon-Lee, PhD, RHIA, FAHIMA
Sandra R. Fuller, MA, RHIA, FAHIMA
Linda L. Kloss, RHIA, CAE, FAHIMA
Patt M. Peterson, MS, RHIA
Carol Spencer, RHIA
Linde M. Tesch, RHIA
Anne C. Zender, MA
Benjamin A. Reed, Jr.

The American Health Information Management Association (AHIMA) is the premier association of health information management (HIM) professionals. AHIMA’s 51,000 members are dedicated to the effective management of personal health information needed to deliver quality healthcare to the public. Founded in 1928 to improve the quality of medical records, AHIMA is committed to advancing the HIM profession in an increasingly electronic and global environment through leadership in advocacy, education, certification, and lifelong learning.

To learn more, go to www.ahima.org.

©2007
Executive Summary

The Changing Healthcare Environment
The transition of the healthcare industry to become more patient-centric and evidence-based has given rapid momentum to improvements in adoption of electronic health records and health information exchanges. The industry is in the process of dramatically changing the way it creates, uses, manages, and disperses health information. Where once health information management (HIM) professionals could focus common professional practice skills on paper-based medical records and processes, these practices are now being challenged by diffuse health data sources, access, privacy and security concerns, quality issues, and definitions of health information, ownership, legalities, and much more. The public and health information users are demanding quality data and assurance that health information is from a trusted source. With the threat of bioterrorism and other forms of pandemic health threats to populations, access and health data transmission procedures from providers to and from the public health arena are being challenged. Increasingly, all of these processes are becoming increasingly more global.

The widespread use of digital data systems and the distribution of technology to the patient and family are giving rise to the proliferation of personal health records as a point of information aggregation and consumer-directed patient care services. As technologies advance, traditional HIM departments are being decentralized and many workers are now working remotely or off shore, being retrained, or seeing jobs eliminated as new methods and systems emerge. This was a process foreseen by economist Robert McTeer, who wrote in 1992:

The challenge for the United States lies in training its workers for the jobs that will be created as these industries grow.....Job creation and job destruction is intertwined. They are both elements in the process through which a society raises its living standards.

As the delivery of healthcare has become more sophisticated, scientific, and complex, the need for HIM professionals at all levels has increased, and the role and status of those managing these functions has increased accordingly. These highly skilled, committed individuals need professional recognition to go along with the complexity and importance of their work contribution. That recognition will only come with the realization that HIM needs graduate-level academic education built on a strong undergraduate foundation and a highly skilled technical work force.

The Challenge
In this environment, the challenge for the American Health Information Management Association (AHIMA) and all HIM professionals today is to focus on the transformation of HIM individually as personal professional development and collectively in guiding the direction of formal education of HIM professionals for the future.

A new vision is proposed for quality education in HIM, such that the profession would be able to further sustain and lead amidst a rapidly changing healthcare delivery system. Adequately equipping the HIM graduate of tomorrow for varied work settings and jobs means covering the breadth of HIM knowledge and reinforcing skill sets to entry levels of competency across a broad spectrum of subject matter that may not be feasible in the limited time spent within the curriculum at each academic level currently.
Against this background and with concerns for the HIM professional future, the AHIMA Board of Directors charged the 2006-07 HIM Education Strategy Committee (ESC) with a broad yet critical objective:

To ensure the future of the health information management profession and the broader health informatics profession to achieve a strong leadership role to transform healthcare through quality health information, for the successful deployment of electronic health records, personal health records, and the national health information network.

Three Key Priorities

In August 2006, the ESC assessed the environmental factors influencing HIM education today with an eye toward what may change in the future. Following the strategic planning model used by the AHIMA board, the ESC created a blueprint for a new vision for HIM education to be achieved by 2016. The result is this white paper, “Vision 2016: A Blueprint for Quality Education in HIM,” which explores several transformation areas to strengthen the HIM profession, clarify industry definitions of the field of HIM and health informatics, and achieve recognition in the healthcare industry as a graduate-level academic-based profession. The blueprint describes the state of HIM education today, outlines the benefits, opportunities, and challenges, and suggests how these priorities might be achieved by 2016.

Between 2006 and 2007, the authors conducted grass-roots investigations, interviews, Web site reviews, and literature searches. In addition, they spoke with professionals in other health disciplines that had made the transition from undergraduate to graduate-level professions, including occupational therapy, physical therapy, pharmacy, medical illustration, dietetics, speech and audiology, and healthcare administration. From these interviews, they collected and synthesized lessons learned, reports of their experiences, and other advice for inclusion in the blueprint.

This report represents a compilation of essential points raised in three key priority areas. Review by HIM educators during the 2007 Assembly on Education Summer Symposium provided additional comments as a significant component. Review by the AHIMA Board of Directors, the Commission on Accreditation for Health Informatics and Information Management Education, and the Council on Certification, as well as various stakeholder groups and the general AHIMA membership, will continue through 2007.

There is much work to be done, but a picture of the future of HIM education is emerging. The three key priorities of the blueprint are:

- **A. Transformation of health information management to a graduate level profession by 2016**
- **B. Realign the health information management associate degree with work force needs by 2016**
- **C. Prepare an effective, qualified pool of health information management faculty by 2016**

Key Priority A: Transformation of HIM to a Graduate-level Profession by 2016

Today, HIM is externally viewed as an undergraduate profession. Although more than 5,000 members of AHIMA hold master’s or doctoral degrees in other disciplines, the terminal degree for the HIM profession is a baccalaureate degree.

To be competitive, the HIM profession needs to develop graduate programs to provide a career ladder for HIM professionals through the master’s degree level. It is important to identify the body of knowledge in HIM at the graduate level, which will require reallocation of some curriculum content from the baccalaureate level, strengthening of informatics and leadership competencies, and formal recognition of master’s degrees in HIM through an accreditation process. Such a step would allow HIM professionals with master’s degrees to take the senior-level positions needed in HIM in the future. Addition of this level would provide a career track in HIM that includes the associate, baccalaureate, and master’s levels.
The baccalaureate curriculum has evolved as information technology has proliferated, but currently too much content is required in baccalaureate programs at too high a mastery level for students to effectively demonstrate expected competencies in so many practice domains. With no required HIM master’s degree for advanced practice HIM roles, this content remains at the baccalaureate degree level.

Many HIM professionals in leadership roles in healthcare organizations attained their skills and the organizational recognition by learning on the job. These individuals are accomplished, but many are not formally trained at the graduate level. Such informal career advancement methods may not be viable in the future with the greater emphasis on health informatics education at the master’s and doctoral levels.

To be successful mapping vocabularies, analyzing transactions from one system to another, implementing new health information systems, defining data and system requirements, HIM professionals will need more formal academic preparation to assume these roles. These competencies are within the domains of the HIM profession. But where “on the job training” has worked well historically, it cannot meet the specific technical and leadership needs of the HIM professional in the electronic environment (e-HIM®) of the future. Nor should the profession defer to other disciplines when a strong set of core HIM competencies have been defined and validated and models presented within the AHIMA model curriculum for HIM graduate education. Many colleges and universities across the country are currently offering such curricula.

The next generation of HIM leaders and managers will come from a more formalized educational setting that builds on the baccalaureate with graduate education. This paper proposes that the profession establish a new educational threshold--a terminal degree in HIM at the master’s degree level for advanced practice roles. These master’s degrees will build on and enhance the established associate and baccalaureate HIM programs that no other professional group can provide as a basis for graduate HIM education.

Key Priority A - Suggested Actions:

♦ Survey the industry to validate emerging jobs for master’s-prepared HIM professionals.
♦ Assess existing baccalaureate and master’s degree programs and developing graduate programs for characteristics in support of this transition.
♦ Learn from the experiences of professions that have engaged in a similar professional and academic transition.
♦ Examine the value of the Registered Health Information Administrator (RHIA) credential as it exists today, as well as eligibility criteria and the testing level of competencies supporting the electronic health record.
♦ Build support among the AHIMA membership and the industry in general to recognize an HIM master’s degree.
♦ Develop a directional strategy for one or more workgroups to review existing certifications and credentialing, including consideration of a different certification/credential for master’s-prepared HIM professionals.
♦ To successfully transition to a stage where HIM professionals at an advanced level of practice are master’s degree-prepared upon entry into the work force, create an effective communication strategy and plan to build support from academic programs and the institutions in which they reside.

Key Priority B: Realign the HIM Associate Degree with Work Force Needs by 2016

The second key priority proposes to revamp the role of HIM professionals with associate degrees from a generalist to a strong technical specialist by 2016. A case could be made that the proposed revisions are needed even sooner as the electronic health record (EHR) technology rapidly advances. A 2007 Boston Globe article stated that Massachusetts “lacks enough people who know how computers work and who understand how doctors diagnose and treat diseases.” This is the core of HIM and fundamental to the success of EHR implementation and maintenance. But the message to the healthcare marketplace is not apparent, nor are the skill sets of the HIM technician recognized as addressing the EHR environment.
The Bush administration and federal government have outlined a plan to encourage electronic health records for all Americans by 2014. This has had many benefits, but increased attention to the term “health information technology” (HIT) has both confused the marketplace and blurred the clarity of the HIM professional title. It is not clear how well the external marketplace understands this professional differentiation and the need for both types of skilled workers.

There clearly is a need to re-anchor the value of the Registered Health Information Technician (RHIT) credential and the academic preparation behind it to new technical roles where the unique value of the RHIT is still not being recognized. There is a logical expansion bridge for the HIM associate degree to baccalaureate and on to graduate levels. With a stronger technical base emphasizing various specialty skills, the pathway may be clearer than it is today for RHITs to proceed to higher academic levels and obtain the advanced core competencies and leadership skills to be competitive.

At the associate degree level this becomes a two-part proposal.

1. Accredited HIM Programs at the Associate Degree Level

This proposal introduces the concept of specialty tracks at the associate degree level, based on a modified core set of knowledge and competencies. This means a restructuring of the curriculum to “make room” for development of special skills within the credit hour limitations of the associate degree. The ESC proposes a redesign to allow specialization tracks built on a basic HIM core to provide the stronger, technically skilled HIM professional employers want for varied e-HIM jobs.

EHR implementation will dramatically alter the HIM landscape in areas of data collection, retention, privacy, regional and national data reporting requirements, and the content and work processes surrounding the health record itself. At each junction, a technically ready work force will be needed to make the health information infrastructure a reality.

The current “one size fits all” HIM associate degree programs may not meet future practice needs. Already the more than 188 accredited programs are pressed to cover an increasingly complex set of entry-level competencies and knowledge at a basic level of understanding. In addition, more than 80 percent of the curriculum requires in-depth practice to attain competency and produce graduates who are work-ready for the job market.

Attaining sufficient competence needed in the various areas of the associate degree curriculum has been a common concern for educators. AHIMA and FORE launched the e-HIM Virtual Laboratory Project in 2006 to join with corporations to provide students with Web-based access to the latest electronic health record tools and applications with practice lessons for reinforcement of skills.

2. The Direction of Coding Education in the US through 2016

This white paper proposes to elevate the requirement for the AHIMA coding credentials to require an associate degree.

A 2006 AHIMA study of coding professionals reveals that finding experienced coders continues to be a significant problem for the nation’s employers. Where 43 percent of employers seek applicants with the Certified Coding Specialist (CCS) specialty credential, denoting a coder with more experience, an additional 37 percent seek applicants with the RHIT credential and an associate’s degree.

Employers say that RHIT applicants have a better potential for career advancement, are better prepared for supervisory roles, and understand the broader range of clinical as well as HIM functions supporting quality coding.
This data implies that to be competitive and successful in the coding job market today, a coder needs (1) experience and (2) a coding credential coupled with an RHIT and/or an associate degree. This paper proposes that coding as an HIM specialty would build on a core set of knowledge with focused competency specialization in the second year leading to an associate’s degree and a more advanced skill level at job entry.

It is expected in the future that we will need experts to process and edit coded data, not to actually code the data. In 2016, it will still be important to teach “how to code,” but it will be more important to teach critical thinking skills that focus on the analysis and reporting of data sets and greater assurance of quality data. This will differentiate coding education programs from the “business model” coding programs as requiring more than just the basic code assignment skills. Academic-based coding professional programs could increase as the need for the coding knowledge worker grows.

Greater focus on data reliability, data integrity, and data predictability will be needed. Future e-HIM coding professionals will need to understand their data to be able to readily explain variances to comparative or benchmark data, as in reimbursement or quality outcomes. The graduate will be expected to be more astute in understanding case mix index and to predict hospital case mix each year with the regulatory changes that impact the reimbursement system. Math and data collection to support research could be required topics for the coding professional, as well as skills in auditing or editing coded data sets and recommending improvements to minimize variation and reduce compliance risk. With an associate degree, the coding professional of the future would be better equipped academically to be a key player under administrative leadership in reimbursement or documentation improvement, coded data-quality outcome reporting, or information technology services.

This brings us to the two-part proposal with a recommended approach to redesign the HIM associate degree into specialty tracks. The first year would focus on HIM foundation courses and building core HIM competencies. In year two, a student would declare a track that reflected their interests. A student could take one or more tracks depending on their abilities and career aspirations, of which one could be the track to become a coding professional.

Key Priority B – Suggested Actions:

♦ Conduct employer research to validate marketability of associate degree HIM specialty skill sets.
♦ Conduct employer research to validate marketability of associate degree for coding professionals.
♦ Restructure/redesign the curriculum and competencies for the HIM associate degree level. This would represent a “core” degree area and “specialization” tracks, including but not limited to encompass the RHIT generalist, coding professional, data analyst, data quality manager, clinical data specialist, release of information specialist, cancer registrar, physician EHR specialist, health information technology (IT) specialist, and other emerging specialty certifications.
♦ Examine complementary changes in the CAHIIM accreditation standards to facilitate specialty tracks.
♦ Evaluate the HIM generalist credential (RHIT) and opportunities for new specialty certifications at the associate degree level.
♦ Promote educational program flexibility to adjust specialization aspects to meet needs of communities of interest and market demand.
♦ If an associate degree is justified as a prerequisite for coding credentials and/or if HIM specialties emerge at the associate degree level, provide clear pathways and guidance for graduates to progress to baccalaureate and master’s degrees, with greater focus on improving the credit transfer process for seamless academic progression.
♦ Increase collaboration with industry (vendors, facilities, organizations, government) to present new technologies via classroom and alternative presentation delivery modules.
♦ Develop a communication strategy to carry the message to internal and external stakeholders and customers on the benefits of associate degrees, including not only AHIMA members but the industry itself.
Key Priority C: Prepare an Effective, Qualified Pool of HIM Faculty by 2016

AHIMA aims to support consistent, high-quality academic preparation of more than 14,000 students across over 235 academic programs and to grow additional academic programs at the master’s and doctoral levels. AHIMA also has committed to deliver on the recommendations of the 2006 AHIMA/AMIA work force report, which recommends preparation of a stronger health information specialist work force through formal education, ensuring faculty competencies in the electronic information environment, and building a network of health information education leaders. That commitment will require both increased academic preparation of HIM educators and significantly more practitioners who choose to become educators. Success with key priorities A and B depends upon success with key priority C.

Shoring up numbers of faculty is a significant challenge. The notion that professionals hesitate to leave practice to become educators because the wages are significantly lower is believed to be a key factor in this shortage. But data shows that the gap between salaries of HIM practitioners and HIM educators is not as dramatic as is often perceived. A 2006 AHIMA educator survey gave the median range of faculty salaries (30 percent) as between $41,000-60,000, with another 19 percent between $61,000-80,000. AHIMA membership data shows the median salary range for HIM professionals (practitioners and educators) with a master’s degree or higher across all job categories as between $50,000-89,999. This range drops with baccalaureate and associate degree HIM professionals.

Academic requirements also pose problems. Most HIM programs include a wide range of specific content grouped in the domains of health information data management, clinical classification systems, information technology and systems, and organizational leadership. As the field advances with the implementation of the electronic health record and more complex organizational structures and information technologies, the breadth and depth of training for the HIM professional expands even further. The faculty expertise needed to teach these varied and complex topics must be drawn from a number of specific disciplines, as well as from HIM practitioners. Finding faculty who have the content expertise, the willingness to apply that expertise to HIM academic programs, and advanced academic degrees at the master’s and doctoral levels is the challenge.

Currently, just over 50 percent of HIM faculty report having a master’s or doctoral degree. Consequently, the current complement of master’s-trained faculty will not be enough to support master’s level education. The estimates are that fewer than 200 AHIMA members currently hold doctoral degrees, and not all are working in academic settings. To further complicate matters, faculty retirement rates are increasing, with limited succession planning for new faculty or qualified candidates emerging to take on faculty roles.

The white paper examines several possible solutions to the faculty shortage, including faculty retraining, partnering with other disciplines, developing HIM as a stand-alone academic discipline, and pairing doctoral faculty with practitioners.

Key Priority C – Suggested Actions:

♦ Raise the visibility of higher education and faculty status in HIM to enhance recruitment.
♦ Encourage models to blend doctoral faculty with practitioners to provide course content.
♦ Develop formal relations with vendors to support faculty development, curriculum development, research, laboratory practice, and scholarships for HIM programs.
♦ Design and implement a methodology to track career growth of HIM practitioners and educators.
♦ Design and promulgate initiatives to bring faculty with complementary academic backgrounds to HIM programs.
♦ Re-evaluate accreditation standards requiring HIM credentialed professionals at the helm of HIM programs at all academic levels.
♦ Create interest in HIM doctoral programs by securing support from HRSA and other government agencies.
♦ Lead negotiations for consortia (at doctoral level) through several colleges to share faculty expertise.
Call to Action
To grow the increased numbers of highly specialized HIM professionals needed for the near future and beyond, new strategies are needed to provide:

♦ accessible, high-quality formal education in HIM at associate, baccalaureate, and graduate levels
♦ enough educators to support HIM program growth
♦ continuing professional development

New models of formal education programs at colleges and universities throughout the nation need to become more visible to the future student population, employers, government and academic administration, and boards. And the industry and public must gain a better awareness of the importance of the role that each HIM professional plays in general healthcare delivery and public health to provide the means for accurate, complete data on which to make sound healthcare decisions. And the HIM profession must identify, encourage, and develop more practitioners to become educators to sustain the HIM programs of today and support growth for the future. All HIM professionals can contribute to these actions.

Perhaps most critically of all, the profession must move beyond rhetoric to action to effectively transition HIM education for the future. AHIMA has been evaluating, writing, researching, and discussing these key priorities for over a decade. The time to reach a consensus and take steps to advance HIM education and develop more qualified faculty is now. If we further delay, it will pass us by.
History

In 1996, the American Health Information Management Association (AHIMA) Board of Directors generated Vision 2006 to set goals for the anticipated changes that lay ahead for the healthcare industry and the health information management (HIM) profession. You can judge for yourself how close we have come to those articulated goals:

- HIM is recognized as a profession with a unique domain and defined knowledge and skill sets.
- HIM is well grounded with standards of practice supported by applied research.
- Clearly defined opportunities and advancement paths exist for members who invest in lifelong learning.
- AHIMA credentials are a tangible asset for career advancement.
- Members working in diverse HIM roles cite AHIMA and its component organizations as their chief source of professional information and research.
- AHIMA influences policy, regulation, and standards affecting information in healthcare.

Emerging roles

New roles for HIM were emerging, and questions arose as to whether changes were needed in practice-based education. In the spirit of Vision 2006, in 1999 AHIMA issued a “White Paper on the Health and Well-Being of Professional Education in the HIM Discipline” which stressed strategic goals focused on education:

- Enhance efforts in education and curriculum reform.
- Amplify a national marketing focus on HIM careers.
- Increase research productivity.
- Drive professional transformation to new professional competencies through accreditation, certification, and professional development.
- Increase efforts for academic program growth at baccalaureate and master’s levels in doctoral granting and research institutions.
Liebler report

In 2002 AHIMA commissioned education expert Roberta Liebler, PhD, to assess HIM curricula, which resulted in the report “Information to Design a Sustainable HIM Curriculum Transformation: A Review of the Literature.”

This report encouraged the profession to bring stronger degree differentiation between associate and baccalaureate levels, to affiliate graduate education into AHIMA, to consider terminal HIM master’s degree specialty concentrations, and support master’s and doctoral degrees for faculty and HIM researchers.

E-HIM® vision for 2010

In 2003, AHIMA convened a task force to consider electronic HIM (e-HIM®), based on the rapid emergence of the electronic health record (EHR), HIPAA implementation, reimbursement changes, developing multipurpose databases, the increasing voice of the healthcare consumer, and the growing need for standards-based technologies leading to new HIM initiatives and best practices. The task force crafted “A Vision of the e-HIM Future,” which stated that we must accelerate efforts to further the transformation of HIM to ensure the competencies of current and prospective HIM professionals to be at the EHR decision table and be considered a respected authority on the management of health data. AHIMA’s e-HIM work built on prior efforts and reflected a commitment to building an evolving professional definition in light of changes in the healthcare industry.

HIM work force

Among many issues that emerged from these milestone reports is the recurring theme of the HIM work force, both in terms of projected needs and of education and training. A large-scale research project conducted from 2002-2004 culminated in a series of 11 detailed and focused reports on AHIMA membership, academic programs, students, faculty, and perceptions of HIM professionalism. A summary report, “Embracing the Future,” states that as the healthcare industry evolves in the electronic environment, the HIM profession has the unique ability and opportunity to influence the implementation and management of electronic health records and shape the ways in which health information is used to deliver quality care, providing that three key strategic directions are embraced: professional development, education and preparation, and HIM leadership.
In 2004, the AHIMA Education Strategy Committee (ESC) delivered a new “framework” for HIM education based on the work force research, describing current and emerging roles for HIM professionals presented as a continuum of academic levels from pre-degree certificates to master’s degrees. A link to the growing field of health informatics as technologies are applied to the generation and management of health information further redefined the competencies and knowledge needed to effectively work in the increasingly electronic environment of healthcare. HIM academic programs were urged to revise curricula, and the seeds of growth for master’s degree programs among existing baccalaureate degree programs began to flourish.¹⁴

In 2006, the ESC was asked to outline a blueprint to quality education in health information management. The aim was for HIM to be able to further sustain and lead amidst a rapidly changing healthcare delivery system, one in which health information is being redefined, travels through interoperable channels and exchanges, challenges our understanding of legal premises, and resides in databases beyond our normal realm of supervision and management. This is coupled with the rise of diversified new disciplines within the realm of health informatics, which constantly challenge the HIM discipline to demonstrate its skill sets and leadership capabilities.

Following the model used by the AHIMA Board of Directors for association strategic planning, this white paper presents several key priority concepts to determine the strategic direction of HIM education.

Perhaps most critically of all, the profession must move beyond rhetoric to action to effectively transition HIM education for the future.

AHIMA has been evaluating, writing, researching, and discussing these key priorities for over a decade. The time to reach a consensus and take steps to advance HIM education and develop more qualified faculty is now. If we further delay, it will pass us by.
Introduction

Our changing industry

The transition of the healthcare industry to become more patient-centric and evidence-based has given rapid momentum to improvements in adoption of electronic health records and health information exchanges. The industry itself is in the process of dramatically changing the way it creates, uses, manages, and disperses health information. Where once HIM professionals could focus common professional practice skills on paper-based medical records and processes, these practices are now being challenged by diffuse health data sources, access, privacy and security concerns, quality issues, and new definitions of health information, ownership, legalities, and more. The public and health information users are demanding quality data and assurance that health information is from a trusted source. With the threat of bioterrorism and other forms of pandemic health threats to populations, access and health data transmission procedures from providers to and from the public health arena are being challenged.

The widespread use of digital data systems and the distribution of technology to the patient and family give rise to the proliferation of personal health records as a point of information aggregation and consumer-directed patient care services. As technologies advance, traditional HIM departments are decentralized, many categories of workers are now working remotely or sometimes off-shore, and others are being retrained or seeing jobs eliminated as new methods and systems emerge. This was a process foreseen by economist Robert McTeer, who wrote in 1992:

The challenge for the United States lies in training its workers for the jobs that will be created as these industries grow.....Job creation and job destruction is intertwined. They are both elements in the process through which a society raises its living standards.

IOM reports

The landmark series of reports by the Institute of Medicine (IOM) titled “Crossing the Quality Chasm” (2001) discussed the demanding needs of 21st century medicine. Next came the 2003 report “Health Professions Education: A Bridge to Quality,” which focused on the challenges faced by the health professions to work effectively within this rapidly evolving environment. Five core competencies for all health professions were stated:

- Provide patient-centered care
- Work in interdisciplinary teams
- Employ evidence-based practice
- Apply quality improvement
- Utilize informatics

Continued on next page
All of these core competencies have relevance to HIM, but “utilize informatics” is at the heart of HIM practice. Healthcare informatics is referenced as “more than information technology,” but as applications applied to medical care, patient management, administrative processes and information management, and the subsequent data analytics, trending, and utilization of health information. Use of informatics in healthcare can reduce errors, manage knowledge and information, assist in making medical and organizational decisions, and communicate and disseminate vital health data.

The challenge for AHIMA and all HIM professionals today is to focus on the transformation of HIM individually as personal professional development and collectively in guiding the direction of formal education of HIM professionals for the future.
The 2006 AHIMA/AMIA Work Force report

The 2006 report “Building the Work Force for Health Information Transformation” summarizes a summit held jointly by AHIMA and the American Medical Informatics Association (AMIA). Summit participants represented a broad spectrum of industry stakeholders from academia, various professional associations, provider organizations, business professionals, and government officials. They developed recommendations to ensure a trained work force specializing in applied clinical informatics, information technology, and information management. The report recommended that the IOM “vision” for core competencies for all health professions be realized. Most specifically the report recommended that HIM:

- Include informatics in professional goals and competencies
- Escalate industry-wide advocacy on the scope and importance of the health information specialist work force and its significant impact on implementation of the EHR
- Prepare a stronger health information specialist work force for the future through formal education
- Ensure faculty competencies in the electronic health information environment
- Market health informatics/information management/information technology related careers to young people to increase the number of qualified participants entering the field
- Engage informatics and information management education leaders in preparing a vision of the academic resources and network needed for health information education leadership in the US.
The report clarifies two contingents in this health information work force: (1) people who specialize in HIM, applied clinical/medical informatics, and information technology resource management (IT), referred to as “health information specialists,” and (2) those who must use health information technology and EHRs to perform their duties. The latter includes physicians, nurses, pharmacists, allied health professionals, and anyone who provides services to patients that require their use of EHRs in their work. Furthermore, while the need for more health information specialists is apparent in forecasts by the Bureau of Labor and others, the number of trained professionals is not keeping pace. No real plan exists to escalate education at all levels, and the industry risks inefficiencies and loss of quality and safety in terms of meeting its goal of an improved, interconnected healthcare information system.

The Bureau of Labor Statistics went on record in 2000 estimating the need for annual replenishment to the health information work force by 2014 of 6,000 HIM professionals at all levels. But the 2006 Commission on Accreditation for Health Informatics and Information Management Education (CAHIIM) annual program assessment report indicates HIM academic programs are graduating just over 2500 students annually, with a steady exponential increase of only 200 to 300 graduates a year.

The work force summit participants agreed that for the electronic health record to be successfully implemented and maintained thereafter, not only are trained computer technicians needed, but the core competencies of HIM professionals are fundamental to this success. HIM professionals are the subject matter experts in health information regulatory, privacy, legal, ethical, reimbursement, and clinical vocabularies, and terminologies as applied to the content within EHR systems. Without fundamental, ongoing surveillance and analytics to ensure quality data for health information users and other stakeholders, and enough qualified, trained, expert health information workers, the notion of reaching the goal of universal EHRs and reliable health information exchanges across the US may not be achieved within the next decade.
Academic Environment, Higher Education, and HIM Programs

Higher education today

Higher education in the United States is undergoing as much of a transition as healthcare is today. Significant changes occurred in the decade from 1966-1976, as “baby boomers” can attest, and the current decade gives every indication that significant changes in higher education may again occur. A 2006 article in the Chronicle of Higher Education found that in the past 40 years, colleges and universities have continued to multiply to accommodate the nation’s expanding population, from 2,329 in 1966 to more than 4,000 in 2005. For-profit, regionally accredited academic institutions have gained prominence and now account for over 8 percent of student enrollments nationwide. The proportion of students enrolled in private colleges has dropped from about 32 percent in 1966 to 25 percent in 2005. Public universities have suffered from shrinking state support as a portion of revenues, and students are saddled with high student loan pay-offs while attempting to seek that first job.

Educational demographics

The demographics of the student body have changed as well. Female enrollment has increased almost four times as rapidly as male. Under-represented minority group enrollments continued to increase at four-year colleges in 2005: African-American students more than 11 percent, Latino students make up 7 percent, Asian-American students make up to 8 percent, and American Indian students at 1.7 percent of the total enrolled student population in US colleges and universities. Female degree recipients now outnumber men at every level except doctorate, but women are now earning 48 percent of PhDs, compared to 12 percent in 1966. The number of freshman women who pursue graduate and professional work shows a fourfold increase from 1966-2005. In terms of academic goals for attending college, 75 percent of incoming freshmen in 2005 indicated “being very well off financially” as their primary goal.

US Secretary of Education Margaret Spellings told the Chronicle that “recent data indicates that over 90 percent of the fastest growing jobs require postsecondary education.” She raised four major issues for US colleges, which have become the mantra of accreditation evaluations and public expectations: accessibility, affordability, accountability, and quality. Although college is now more expensive, it is also taking students more than four years to graduate at the baccalaureate level.

Continued on next page
Academic Environment, Higher Education, and HIM Programs, Continued

HIM program statistics*

In comparison, the HIM academic community has 235 CAHIIM-accredited programs (47 baccalaureate and 188 associate) and three master’s degree-level approved programs with steadily increasing enrollments of over 14,000 students, but just over 2,500 graduates (baccalaureate and associate) each year. In fact, the actual proportion of graduates to enrolled students from baccalaureate programs for the past four years has shown a steady decline.

<table>
<thead>
<tr>
<th>Year</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>31%</td>
<td>28%</td>
<td>26%</td>
<td>24%</td>
<td></td>
</tr>
</tbody>
</table>

*Data from the 2006 CAHIIM Annual Program Assessment Report (APAR)

Continued on next page
Academic Environment, Higher Education, and HIM Programs, Continued

HIM program statistics,* continued

*Data from the 2006 CAHIIM Annual Program Assessment Report (APAR)

Continued on next page
This decline in percent of graduates to enrolled students may indicate that students are taking longer to complete degrees or that they are transferring out. Current attrition rates for HIM programs remain relatively low, less than 7 percent for 2006, while a significant increase in part-time students is noted. The CAHIIM program data from 2006 indicates only 46.4 percent of all HIM students enrolled are full-time. Baccalaureate programs alone have demonstrated a steadily increasing percent of part-time students from 2003 (26 percent) to 2006 (31 percent).

*Data from the 2006 CAHIIM Annual Program Assessment Report (APAR)
Academic Environment, Higher Education, and HIM Programs,
Continued

The HIM educational landscape is changing in other ways as well. In a recent article work force analyst Stephen Collier states that data from the last several years for schools of allied health appears to indicate noteworthy increases in graduates at the associate, master’s, and doctoral levels, but not at the baccalaureate level.25 If these data indicate a trend of little to no growth or declining enrollments, it will hold unwelcome implications for most schools of allied health that baccalaureate enrollments are not demonstrating growth and in some allied health programs are actually declining. As of 2006, 45.3 percent of HIM programs are part of allied health divisions, 22.6 percent in health sciences, 8.3 percent in business, and 17.6 percent in other divisions not specified.

As for finding the right career opportunity after graduation, a survey of HIM students revealed a 64 percent “high to very high” satisfaction rate with post-graduation employment for the associate degree graduate, and a 51 percent satisfaction rate for the baccalaureate degree graduate.26 The same survey results indicated that 87 percent of baccalaureate HIM graduates planned to continue on for master’s and doctoral degrees; 74 percent of associate degree graduates planned to continue on for a baccalaureate degree, and another 12 percent had set their goal at the master’s degree level.

Continued on next page
HIM faculties face challenges as well. All CAHIIM-accredited programs were charged to update and implement the newest competencies and knowledge clusters to reflect current and future practice competencies required for health information transformation to an electronic environment by the 2007-08 academic year. This has increased the burden on faculty to keep current with practice initiatives and technology advances, as well as perfecting their own skills using technology.

The numbers and types of faculty supporting CAHIIM-accredited programs demonstrate a high reliance on adjunct faculty. While this brings reality to the classroom in terms of HIM practice skills and knowledge, it does make it difficult for program directors to manage adjuncts in terms of curriculum management, testing, and evaluation design skills, although creation of student projects and activities by adjuncts is reportedly of good quality. On average, there are two full-time faculty members for associate degree programs and three for baccalaureate programs.

*Data from the 2006 CAHIIM Annual Program Assessment Report (APAR)
The data still demonstrate moderate to high vacancy rates in HIM jobs across the nation, particularly in pockets of underserved communities. Some progress is being made through the growing numbers of online academic programs, with over 30 programs at associate and baccalaureate levels reporting fully online HIM offerings. These provide an attractive alternative for the working HIM student and may help to mitigate need in underserved areas.

Generally, the concerns about filling open positions expressed by employers are primarily:

- expectations for experienced HIM professionals rather than new graduates
- new graduates who have had some work experience and can come to the employer job ready
- positions requiring advanced degrees where competing professionals from other disciplines adapt to the positions which could be filled by HIM professionals
- positions requiring new skills and experience with EHR technology, project management, team leadership, data analytics, or strategic planning where HIM graduates are not viewed as contenders

The gap widens when HIM professionals on the job are not taken seriously despite their expanded body of knowledge of managing health information in an electronic environment, data standards, and coded data sets, strength in interpreting regulatory requirements and privacy/security practices, and ability to troubleshoot issues of data integrity or quality.
Finally, a 2006 study of undergraduate students entering college today indicates that more than 97 percent of students own a PC. (In fact, 38 percent of 18- to 19-year-olds begin their undergraduate experience with both a laptop computer and a desktop computer.) When asked how colleges should spend information technology (IT) money on their behalf, students would like to see more computer labs, IT training, and basic IT courses such as Excel and Word. While most younger students enter college with self-described skills in IT communication and recreation applications, they are unskilled in data input and practical business applications.

Students believe that faculty also need additional training on information technologies, according to this study. Some students stated that professors never teach them to use IT, they just assume they know how and require them to use it. As a result, many students say they only learn enough to get by.²⁷

The implications for HIM programs are that electronic health information technologies will be intriguing to draw students in, but faculty will need to gain experience in using both health information technologies and classroom technology. Adequately equipping the HIM graduate of tomorrow for the varied work settings and jobs available means covering the breadth of HIM knowledge and reinforcing skill sets to entry levels of competency across a broad array of subject matter. Unfortunately, this may not be feasible in the limited time spent within the curriculum at each academic level.
About the White Paper

Introduction

Against this background and with concerns for the HIM professional future, the AHIMA Board of Directors charged the 2006-07 HIM Education Strategy Committee (ESC) with a broad yet critical objective:

To ensure the future of the health information management profession and the broader health informatics profession to achieve a strong leadership role to transform healthcare through quality health information for the successful deployment of electronic health records, personal health records, and the national health information network.

In August 2006, the ESC assessed the environmental factors influencing HIM education today with an eye toward what may change in the future. Following the strategic planning model used by the AHIMA board, the ESC created a blueprint for a new vision for HIM education to be achieved by 2016. The result is this white paper, “Vision 2016: A Blueprint for Quality Education in HIM,” which explores several transformation areas to strengthen the HIM profession, clarify industry definitions of the field of HIM and health informatics, and achieve recognition in the healthcare industry as a graduate-level academic-based profession. The blueprint describes the state of HIM education today, outlines the benefits, opportunities, and challenges, and suggests how these priorities might be achieved by 2016.

The white paper was reviewed by the AHIMA Board of Directors, the Council on Certification, and the Commission on Accreditation for Health Informatics and Information Management Education (CAHIIM).

Research conducted

Research conducted by the ESC members and AHIMA staff included interviews, Web site reviews, literature searches, and discussions with several other health fields that had made the transition from undergraduate to graduate-level professions: occupational therapy, physical therapy, pharmacy, medical illustrators, dietetics, speech and audiology, and healthcare administration, among others. Reports of their experiences, lessons learned, and other advice were collected and synthesized for inclusion in this paper and other supporting documents as appropriate.
The ESC reviewed the data tables and final summary report from a master’s level job analysis conducted by AHIMA in 2006. Two other documents provided insight as well: the 2006 AHIMA/AMIA report “Building the Work Force for Health Information Transformation” and “Evidence and Informatics Transforming Nursing: 3-Year Action Steps toward a 10-Year Vision,” a 2007 report on nursing informatics by the Technology Informatics Guiding Education Reform (TIGER) Initiative.

Additional materials reviewed by the ESC included:

- Composite of articles by Professor Stephen N. Collier, PhD, director and professor of the University of Alabama’s Office of Health Professions Education and Workforce Development, who researches professions seeking to readjust or move to higher academic levels

- A report by a Task Force on the Professional Doctorate of the Higher Learning Commission of North Central Association of Colleges and Schools, exploring professional doctorates

- A 2006 report published by the Association of Schools of Allied Health Professions on professional degrees in the allied health professions

- AHIMA’s 1999 “Coding Futures Report”

- AHIMA’s 2006 report “Coding Professionals, Today, Tomorrow and the Future: A Workforce Study”

- Recommendations from AHIMA’s 2004 work force study

- Data from AHIMA’s membership database and surveys

- Analysis of the Carnegie Classification System for colleges and universities

- Article by Lou Ann Wiedemann, “The Ever-Changing Role of the HIM Coding Professional”

- Presentation by William Hersh, MD, “Training the Health and Biomedical Informatics Workforce: Competencies and Approaches”

- Article by Jennifer Garvin and Valerie Watzlaf, “Current Coding Competency Compared to Projected Competency”

- Current model curricula for associate, baccalaureate, and master’s level HIM programs

- Current model curriculum for coding certificate programs

- The 2004 “Framework Document for HIM Education in an Electronic Environment”
About the White Paper, Continued

In March 2007, the key priorities of the blueprint were defined. They are:

A. Transformation of health information management to a graduate-level profession by 2016
B. Realign the health information management associate degree with work force needs by 2016
C. Prepare an effective, qualified pool of health information management faculty by 2016

Review by HIM educators and discussion sessions at the Assembly on Education (AOE) Summer Symposium in 2007 has provided specific comments and recommendations which are a significant component of the final paper. Review by the AHIMA Board of Directors, the CAHIIM Board of Commissioners, and the Council on Certification, as well as various stakeholder groups and the general AHIMA membership, will follow in fall 2007.

This paper is a first-pass compilation of essential points raised in each of the three key priority areas. There is much work to be done, but a picture of the future of HIM education is emerging.
Key Priority – Section A

Transformation of Health Information Management
to a Graduate-Level Profession by 2016
With the 2004 publication of the results of AHIMA and FORE’s work force research and the report “Embracing the Future,” the following recommendations emerged.39,40

- Graduate education for the HIM profession should be a priority. The most substantial reason for creating graduate programs is the desire of AHIMA members for graduate education, as demonstrated by the requests the association receives for scholarships for graduate study, doctoral dissertation support funds, and requests for graduate-level career counseling. Collaborations with other organizations at this level should not be ignored. Although dedicated HIM graduate programs should be established, other alternatives should also be explored. HIM tracks within other disciplines with special HIM credentials as an outcome are possibilities. Ideally these programs will help to define the standard HIM professional tracks of the future, but it is important for HIM to simply claim some turf for its own future development.

- HIM must embrace a new, broader set of professional roles and paradigms, moving beyond the traditional boundaries. This requires expansion of vision for the profession, acceptance of greater diversity among the membership. Common education and core understanding of health information will bind different groups, but diversity of roles, functions, and settings will be commonplace.

- AHIMA culture must pursue a more global vision of the HIM profession.

- Create a master’s level credential. Until there is a master’s level in HIM, it is unlikely that the profession will be taken seriously as a long-term career option.
AHIMA took several steps to act on these recommendations, including a 2006 master’s level job analysis that validated work performed by professionals at the master’s degree level or higher working within health information technology or managing health information. Usable responses were obtained from 609 individuals, with four of the most frequently selected job titles representing 56 percent of survey respondents:

- 33 percent work in some role as a HIM director, assistant director, or supervisor
- 11 percent as consultants
- 6 percent as coding compliance auditors
- 6 percent as project managers

Significantly, not all of the respondents were HIM credentialed professionals. This indicates the presence of non-credentialed professionals from other disciplines with advanced degrees already working within the realm of HIM in jobs that should be ours.

The findings of the job analysis provide insight on the tasks and knowledge necessary for HIM professionals at the master’s degree or higher level and predicts numerous new tasks and knowledge for HIM professionals to work effectively in the future in an electronic healthcare environment. The AHIMA Council on Certification is reviewing the results of the master’s level job analysis for the possibility of an advanced specialty credential, although no specific credential has emerged to date.
Advance HIM Education to the Master’s Degree

Key Priority A

This paper proposes the exploration of advanced education at the master’s degree level to be recognized as the terminal degree in health information management.

Other health professions

In the past decade, other health-related professions have proposed, developed, or implemented graduate-level academic requirements for their professions. For example, the field of healthcare administration, although offering baccalaureate degrees, essentially culminates at the professional career level with a master’s degree. When this profession saw employers seeking MBA graduates for healthcare administrator jobs, the professional association conducted a large-scale research project culminating in redefined competencies and pedagogy to address market demands. It also recreated its accrediting body and standards to a new Commission on Accreditation of Healthcare Management Education.

Another example: The field of physical therapy raised its entry level for professional therapists to the doctoral level, generating much dialogue and concerns about what is termed “professional degree creep.” This change has elevated the entry practice level and view of the profession to one requiring graduate education. It allows the independent physical therapy practitioner to formally direct patient treatment plans and play a proactive role in patient therapies, rather than a secondary role responsive to physician-generated orders. Other health-related disciplines that have explored and concurred on master’s or doctorate graduate education as entry level include speech and audiology, dietetics, nursing administration, rehabilitation therapy, and pharmacy.

Continued on next page
Rationale for HIM master’s degree at entry-level

In HIM, discussion and development of a master’s degree in HIM has occurred for decades, as evidenced by two previous white papers (1986 and 1999). Following the 2004 work force research and the greater concern that HIM professionals are not at the planning tables at the local level for electronic health record decisions, renewed discussions on graduate education for HIM began.\(^{42}\)

The movement toward the master’s degree as an entry-level requirement for the HIM professional is influenced by broader trends in healthcare work force development and increased healthcare market demand. The demand results from a perceived absence of a cadre of workers who can serve as a link between clinicians and the implementation and maintenance of electronic information technologies.

Needs within health informatics

Discussions among clinical informatics professionals at the 2007 spring congress of the American Medical Informatics Association (AMIA) cited the need for a discipline to address the management of electronic health records, work with vocabularies and terminologies, and develop processes related to electronic health information exchanges.

A 2007 *Boston Globe* article cited “shortages of qualified personnel in healthcare information technology” as slowing projects and forcing hospitals to turn to outside consultants.\(^{43}\) The article focused on development of master of science programs in health informatics at Northeastern University (which, ironically, has closed its longstanding baccalaureate degree program in HIM). Other training programs at the master’s degree level are cited, with no mention of HIM baccalaureate degree programs, of which CAHIIM has accredited 47.

Many within the informatics academic community, including Hersh and others, have presented papers stating that health informatics core content should be introduced at the baccalaureate level and specialized at the master’s level.\(^{44}\) Meanwhile medical, biomedical, translational, and health informatics specialty programs at the graduate level are proliferating at prestigious schools such as Duke University, Stanford University, Columbia University, and others. With the June 2007 passage by the House of Representatives of a bill emphasizing the need to train 10,000 healthcare workers equipped to use health information technology effectively, the momentum and support for more higher education programs with this emphasis can be anticipated.\(^{45}\)
The challenge to cover all material to the depth and skill levels required in the limited time frame of the educational experience is recognized by HIM educators. Current baccalaureate degree programs in HIM are challenged to ensure students achieve entry-level competence in five HIM practice domains and 17 subdomains. They are also challenged to cover 80 out of 84 knowledge clusters or 96 percent of academic content at the detailed understanding (level 4) and skilled use (level 5) competency levels required for CAHIIM accreditation. A subset of the curriculum competencies and knowledge clusters (about 60 percent) reflect HIM practice today and are required and tested for the RHIA credential.

Enrollments of students are relatively strong, with 2,433 students across 47 programs. But what adds to a stressful academic race to competency is that 32 of the 47 programs enroll students at the junior year, senior year, or post-baccalaureate level, providing in reality only one to two years of actual course work.

The competencies and knowledge clusters articulated in 2006 were included within the baccalaureate degree to ensure that HIM professionals graduating today and in the future would have the skills and knowledge expected by employers, particularly related to the transition to the electronic health record. The challenge is further complicated by the fact that HIM professionals also need to be functionally knowledgeable in all aspects of managing existing paper and hybrid records and data systems as the transition to an EHR unfolds.

Today, HIM is externally viewed as an undergraduate profession. Although more than 5,000 members of AHIMA hold master’s or doctoral degrees in other disciplines, the terminal degree for the HIM profession is a baccalaureate degree.

As a result, many HIM professionals currently in leadership roles in healthcare organizations attained their skills and organizational recognition by learning on the job. These individuals are accomplished, but few are formally trained at the graduate level for the informatics future.
But where “on the job training” has worked well historically, it cannot meet the specific technical and leadership needs of the HIM profession in the electronic environment of the future. The complex work of the e-HIM future—mapping vocabularies, analyzing transactions from one system to another, implementing new information systems, defining data and system requirements—will all require more formal academic preparation.

To be competitive, the HIM profession needs to develop graduate programs to provide a career ladder for HIM professionals through the master’s degree level. It is important to identify the body of knowledge in HIM at the graduate level, which will require reallocation of some curriculum content from the baccalaureate level, strengthening of informatics and leadership competencies, and formal recognition of master’s degrees in HIM through an accreditation process. Such a step would allow HIM professionals with master’s degrees to take the senior-level positions needed in HIM in the future. Addition of this level would provide a career track in HIM that includes the associate, baccalaureate, and master’s levels.

As sociologist Ellen Borges reported in a 1993 HIM curriculum project for AHIMA, “as the profession changes, the core must change. Even technical courses will have to be taught at a broad, rather than at a detailed level, in order to cover basic principles to prepare professionals to communicate, problem-solve and make decisions. It will be increasingly important to focus on a general preparation with specialties chosen as majors.” Borges asked AHIMA to consider what is needed for HIM to gain credibility with other professionals in various work settings and to warn us that there will be other professions who will be trying to fill HIM niches. She asked us to consider what will need to be in place to put HIM professionals in competitive positions with these other groups. This is the issue we present today.
Currently, about 11 percent or 5,600 members of AHIMA have graduate degrees at the master’s or doctoral level. Of those who have master’s degrees, 26.6 percent are directors, 11.5 percent are academic faculty, 10.8 percent are in managerial positions, and only 4.6 percent hold C-level (administrator/CEO/COO) positions. Fig. 2 describes the job titles of a subset of AHIMA membership holding master’s or doctoral degrees. Clearly, to be competitive in a leadership role in healthcare organizations in the future, advanced education is necessary.

Fig. 2. Job Titles of a Subset of AHIMA Members with Master’s or Doctoral Degrees

<table>
<thead>
<tr>
<th>Job Titles</th>
<th>#</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Director</td>
<td>598</td>
<td>26.6%</td>
</tr>
<tr>
<td>HIM Faculty</td>
<td>259</td>
<td>11.5%</td>
</tr>
<tr>
<td>Manager</td>
<td>242</td>
<td>10.8%</td>
</tr>
<tr>
<td>Consultant</td>
<td>218</td>
<td>9.7%</td>
</tr>
<tr>
<td>Coding Professional</td>
<td>144</td>
<td>6.4%</td>
</tr>
<tr>
<td>Administrator/CEO/COO</td>
<td>103</td>
<td>4.6%</td>
</tr>
<tr>
<td>Assistant Administrator/VP/AVP</td>
<td>87</td>
<td>3.9%</td>
</tr>
<tr>
<td>Other</td>
<td>86</td>
<td>3.8%</td>
</tr>
<tr>
<td>Compliance Officer</td>
<td>58</td>
<td>2.6%</td>
</tr>
<tr>
<td>Coordinator</td>
<td>57</td>
<td>2.5%</td>
</tr>
<tr>
<td>Project Manager</td>
<td>53</td>
<td>2.4%</td>
</tr>
<tr>
<td>Assistant or Assoc Director</td>
<td>43</td>
<td>1.9%</td>
</tr>
<tr>
<td>Supervisor</td>
<td>41</td>
<td>1.8%</td>
</tr>
<tr>
<td>Systems Analyst</td>
<td>35</td>
<td>1.6%</td>
</tr>
<tr>
<td>Privacy Officer</td>
<td>33</td>
<td>1.5%</td>
</tr>
<tr>
<td>Chief Information Officer</td>
<td>26</td>
<td>1.2%</td>
</tr>
<tr>
<td>Analyst- various</td>
<td>24</td>
<td>1.1%</td>
</tr>
<tr>
<td>Specialist- various</td>
<td>19</td>
<td>0.8%</td>
</tr>
<tr>
<td>Chief Executive Officer</td>
<td>17</td>
<td>0.8%</td>
</tr>
<tr>
<td>IS/MIS Director</td>
<td>12</td>
<td>0.5%</td>
</tr>
<tr>
<td>Coding Consultant</td>
<td>11</td>
<td>0.5%</td>
</tr>
<tr>
<td>Data Quality Analyst</td>
<td>11</td>
<td>0.5%</td>
</tr>
<tr>
<td>Clinical Data Specialist</td>
<td>10</td>
<td>0.4%</td>
</tr>
<tr>
<td>Registrar</td>
<td>9</td>
<td>0.4%</td>
</tr>
<tr>
<td>Nurse</td>
<td>7</td>
<td>0.3%</td>
</tr>
<tr>
<td>Attorney</td>
<td>6</td>
<td>0.3%</td>
</tr>
<tr>
<td>Chief Financial Officer</td>
<td>6</td>
<td>0.3%</td>
</tr>
<tr>
<td>Customer/Client Representative</td>
<td>6</td>
<td>0.3%</td>
</tr>
<tr>
<td>Doctor</td>
<td>6</td>
<td>0.3%</td>
</tr>
<tr>
<td>Auditor- various</td>
<td>5</td>
<td>0.2%</td>
</tr>
<tr>
<td>Client Support Specialist</td>
<td>5</td>
<td>0.2%</td>
</tr>
<tr>
<td>Information Security Officer</td>
<td>5</td>
<td>0.2%</td>
</tr>
<tr>
<td>Clinical Research Assistant</td>
<td>2</td>
<td>0.1%</td>
</tr>
</tbody>
</table>

TOTAL RESPONSES 2,244
AHIMA Member Profile Analyses, Continued

Baccalaureate degree statistics

At the baccalaureate level, Fig. 3 indicates 30.5 percent of RHIA-credentialed members reporting are directors or managers, while 18.5 percent are coding professionals. Only 2.2 percent of HIM (RHIA-credentialed) members with baccalaureate degrees are in C-level (administrator/CEO/COO) roles.

Fig. 3. Job Titles of a Subset of AHIMA Members with Baccalaureate Degrees

<table>
<thead>
<tr>
<th>Job Titles</th>
<th>#</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coding Professional</td>
<td>1854</td>
<td>18.5%</td>
</tr>
<tr>
<td>Director</td>
<td>1816</td>
<td>18.1%</td>
</tr>
<tr>
<td>Other</td>
<td>1390</td>
<td>13.9%</td>
</tr>
<tr>
<td>Manager</td>
<td>1246</td>
<td>12.4%</td>
</tr>
<tr>
<td>Consultant</td>
<td>810</td>
<td>8.1%</td>
</tr>
<tr>
<td>Supervisor</td>
<td>405</td>
<td>4.0%</td>
</tr>
<tr>
<td>Coordinator</td>
<td>341</td>
<td>3.4%</td>
</tr>
<tr>
<td>Administrator/CEO/COO</td>
<td>219</td>
<td>2.2%</td>
</tr>
<tr>
<td>Systems Analyst</td>
<td>217</td>
<td>2.2%</td>
</tr>
<tr>
<td>Data Quality Analyst</td>
<td>196</td>
<td>2.0%</td>
</tr>
<tr>
<td>HIM Faculty</td>
<td>174</td>
<td>1.7%</td>
</tr>
<tr>
<td>assistant Director</td>
<td>169</td>
<td>1.7%</td>
</tr>
<tr>
<td>Project Manager</td>
<td>156</td>
<td>1.6%</td>
</tr>
<tr>
<td>Compliance Officer</td>
<td>149</td>
<td>1.5%</td>
</tr>
<tr>
<td>Assistant Administrator/VP/AVP</td>
<td>110</td>
<td>1.1%</td>
</tr>
<tr>
<td>Medical Record Analyst</td>
<td>109</td>
<td>1.1%</td>
</tr>
<tr>
<td>Registrar</td>
<td>105</td>
<td>1.0%</td>
</tr>
<tr>
<td>Privacy Officer</td>
<td>81</td>
<td>0.8%</td>
</tr>
<tr>
<td>Transcriptionist</td>
<td>73</td>
<td>0.7%</td>
</tr>
<tr>
<td>Team Leader</td>
<td>68</td>
<td>0.7%</td>
</tr>
<tr>
<td>Nurse</td>
<td>65</td>
<td>0.6%</td>
</tr>
<tr>
<td>Sales Representative</td>
<td>47</td>
<td>0.5%</td>
</tr>
<tr>
<td>DRG Coordinator</td>
<td>42</td>
<td>0.4%</td>
</tr>
<tr>
<td>Customer/Client Representative</td>
<td>34</td>
<td>0.3%</td>
</tr>
<tr>
<td>IS/MIS Director</td>
<td>34</td>
<td>0.3%</td>
</tr>
<tr>
<td>Assistant Manager</td>
<td>33</td>
<td>0.3%</td>
</tr>
<tr>
<td>Client Support Specialist</td>
<td>26</td>
<td>0.3%</td>
</tr>
<tr>
<td>Chief Information Officer</td>
<td>16</td>
<td>0.2%</td>
</tr>
<tr>
<td>Information Security Officer</td>
<td>13</td>
<td>0.1%</td>
</tr>
<tr>
<td>Chief Financial Officer</td>
<td>6</td>
<td>0.1%</td>
</tr>
<tr>
<td>Case Mix Analyst</td>
<td>3</td>
<td>0.0%</td>
</tr>
<tr>
<td>Safety Officer</td>
<td>3</td>
<td>0.0%</td>
</tr>
<tr>
<td>Doctor</td>
<td>1</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

TOTAL RESPONSES 10,011

Continued on next page
The 2006 AHIMA salary survey reveals that education level can make a difference in salary. The average HIM director salary clearly shows the impact of higher education. A director of HIM with an associate degree earns on average $60,613; that number grows to $75,126 for those with a baccalaureate degree, and to $86,728 for those with a master’s degree. Note that both associate and baccalaureate degree HIM professionals each represent approximately one-third of the sample, while master’s degree level represent 11 percent. Yet the results clearly demonstrate that HIM professionals with advanced degrees earn higher salaries (Fig. 4).

| Master, Doctorate Level Salaries-AHIMA 2006 Profile Data |
|---|---|---|
| % | # | $ |
| 8% | 182 | $100,000-$124,999 |
| 12% | 265 | $90,000-$99,999 |
| 9% | 193 | $80,000-$89,999 |
| 11% | 246 | $70,000-$79,999 |
| 13% | 289 | $60,000-$69,999 |
| 15% | 328 | $50,000-$59,999 |
| 10% | 226 | $40,000-$49,999 |
| 6% | 133 | $30,000-$39,999 |
| 2% | 38 | $20,000-$29,999 |
| 1% | 29 | Less than $20,000 |

Continued on next page
There is an increasing bifurcation of work force demands with regard to the skills and knowledge needed by those with associate and master’s degrees versus those who have baccalaureate degrees. The 2004 work force research indicates that there is less demand for the baccalaureate graduate than for the associate degree, technically skilled graduate and the master’s prepared manager/leader.

Recent studies of various allied health education disciplines have suggested that there has been a persistent bifurcation of graduates at different academic levels, according to Collier. In the last several decades there has been a rapid increase in the number of master’s level graduates, a relatively stable number of associate degree graduates, and a fairly significant decline in baccalaureate graduates across allied health disciplines.

HIM, along with other disciplines, has experienced a greater need for workers with additional education and expanded professional roles along with greater numbers of technically skilled workers concentrating on specific job-related tasks. Adding to this bifurcation, Collier reports specific data that demonstrate an ongoing shortage of professionals in a wide variety of allied health disciplines, including HIM professionals at all levels. In fact, if one measures future job growth and net replacements of the aging work force, the allied health disciplines appear to have as severe a shortage as nursing.

The problem is not limited to the United States. Australian HIM educators reported a documented decline in demand for undergraduate degrees at universities housing HIM programs in Australia, resulting in the phase-out of baccalaureate programs. Such programs are being replaced with graduate entry-level health informatics programs or combined with other degrees such as public health, health services administration, informatics, and business, risking loss of the unique HIM identity. Further, the Australian educators reported that HIM is seen more as a discipline focused on coding and department management and less on informatics and technology.
HIM graduate program accreditation

Graduate education in HIM in the US is developing and expanding. The Commission on Accreditation for Health Informatics and Information Management Education (CAHIIM) is tracking the progress of 22 master’s degree programs in HIM, health informatics, or public health informatics or graduate program tracks within healthcare administration. All of these developing programs indicate that they would seek CAHIIM program approval or accreditation.

Of the graduate programs within the scope of CAHIIM, 23 percent are in academic institutions with established, accredited baccalaureate degree HIM programs, while the majority of graduate programs being tracked have grown from informatics programs or other disciplines not related to accredited HIM undergraduate programs.

The American Medical Informatics Association (AMIA) Web site lists colleges and universities that offer informatics programs, including 47 institutions offering master’s degrees in some form of health informatics. The three CAHIIM-approved master’s degree programs are included on that list, but only two of the 22 master’s degree programs currently being tracked by CAHIIM appear on the list at the time of this report.

Professional credibility

Based on various statements from AHIMA members working in healthcare facilities today, the notion has evolved that growth in HIM graduate level education programs could:

- substantiate the credibility of HIM to claim turf for future involvement in the development of electronic health records
- stake a claim in the field of health informatics

Graduate-level options may be in programs specific to HIM or health informatics or may be combined with other master’s programs such as a business administration, healthcare administration, or information systems. HIM can increasingly be perceived as a long-term career option as the number of opportunities for master’s level education and credentials increase.

Continued on next page
With the health information technology agenda that has been set for the nation and the electronic health record (EHR) established as a national goal, it is critical that as the leaders in HIM, we assess work force needs throughout the marketplace. The growing number and diversity of HIM roles and job settings has been described through AHIMA’s 2004 work force research, data gleaned from the AHIMA membership database, and most recently in positions advertised for HIM professionals (see Appendix A).52

Currently only two credentials, RHIA and RHIT, represent baccalaureate and associate degree HIM career entry levels. Those HIM professionals who have attained graduate-level education, regardless of entry-level certification, have in larger numbers achieved more advanced positions in the healthcare marketplace.
Potential academic models need to be explored to modernize the delivery of HIM education. It is quite possible that educational models could be designed following a format similar to some MBA programs, with two years of HIM course content at the baccalaureate degree level and an additional year of solid graduate work to culminate in a master’s degree. Among HIM baccalaureate degree programs currently accredited by CAHIIM, a substantial number are in educational institutions that are equipped to offer graduate degrees, thus making the shift to a master’s degree entry-level program less onerous. Utilizing the Carnegie Foundation’s basic classification descriptions for 2007, 40 out of the 47 accredited or 85 percent of HIM baccalaureate degree programs are in master’s or doctorate-granting colleges and universities. Of these, 23 programs are in doctorate-granting research universities, according to the Carnegie Classification system.

The transition to master’s degree programs in HIM and/or health informatics is already a reality. Currently, there are three CAHIIM-approved master’s degree HIM programs that encourage RHIA credentialed graduates or RHIT credentialed with a baccalaureate degree to enroll and continue their education. But more often these programs educate students from a variety of other disciplines (such as computer science, engineering, nursing, public health, and other health-related disciplines) who seek advanced education and an entry into the realm of health informatics. It should be noted that none of the three approved programs is exclusively dedicated to career progression for the HIM baccalaureate graduate.
AHIMA must make a stronger commitment to clearly define the career benefits of and models to achieve graduate education in HIM and grow the numbers of HIM professionals with graduate degrees in the field. Otherwise HIM will continue to be regarded as an undergraduate profession with defined boundaries potentially limiting involvement in EHR decision making. Examples of transition models could include:

- Existing HIM baccalaureate degree programs add one additional year of HIM curriculum content at the master’s level with graduates receiving an HIM master’s degree on program completion (HIM baccalaureate degree + one additional year at the graduate level). In such a model students would take general education and biomedical courses for the first two years of baccalaureate education or transfer in with previous education or an HIM associate’s degree. This model culminates with a master’s degree.
- Entering students holding a previously earned baccalaureate degree or HIM post-baccalaureate certificate would take one to two years of master’s level study to graduate with an HIM master’s degree on program completion. The length of time for the HIM core curriculum would vary based on previous academic background and experience.
- Three-year baccalaureate degree programs capitalizing on advanced placement courses in high schools plus two-year master’s degree programs are growing in popularity in Europe, Canada, and parts of Asia.

Any of these academic transition models would require changes to RHIA certification requirements or development of a new graduate-level credential to emphasize, distinguish, and maintain HIM as a specific academic discipline.

Although there is a critical need for HIM professionals in acute care to guide and manage EHR implementations, there is growing evidence that the marketplace for HIM graduates is expanding to other healthcare settings (e.g., home health care, long term care, hospice, etc.) as well as to other affiliated healthcare industry markets such as biotechnology, public health, pharmaceuticals, physician group practices, government, and more. HIM graduates will need to be academically prepared to demonstrate the professional skills and abilities necessary to promote the value of HIM along with introducing policies and procedures to ensure quality data to these new markets.
New skill sets

AHIMA’s master’s level job analysis revealed several new or expanded knowledge areas difficult to effectively target at the undergraduate, baccalaureate level.55 These include:

- genomic impact on health information and privacy concerns
- problem solving and critical thinking at a higher taxonomic level
- clinical data capture and analysis techniques to support bioterrorism and pandemic surveillance
- data analytics and outcome measurements for healthcare quality and patient safety
- project management at the graduate level
- organizational change management techniques
- public policy development, analysis, and advocacy approaches
- development of business plans and strategies
- demonstrated leadership competencies
- conducting justification and cost/benefit analyses for health information technology projects
- developing and overseeing technical and operational policies and procedures for inter-organizational health data exchange
- creating and evaluating architectural models for the healthcare enterprise as relates to clinical, financial, or administrative data
- selecting, designing, or implementing applications or systems interfaces for ease of data entry, data transfer, and data display
- advanced knowledge of data concepts as related to data standards, vocabularies, terminologies and ontologies applied to electronic information systems, information interoperability, and information exchange

These knowledge cluster areas need to be perfected as areas of HIM competency requiring advanced study beyond the levels addressed in HIM baccalaureate curricula. These content areas may require faculty with expertise from other disciplines to teach in HIM graduate programs and demonstrate competency areas not commonly found in current baccalaureate programs or tested within the competencies specified for the RHIA credential.
EHR educational demands

In both the healthcare workplace and academic institutions, HIM professionals and educators are increasingly being asked to provide EHR-related education and information directly to other allied health professionals.

For instance, the Institute of Medicine (IOM) Report in 2003 stated that all health-related professions should maintain use of informatics technologies in their daily work as a basic practice competency. As a result, where HIM is regarded as an expert source of practical skills and information transfer, HIM professionals are finding yet another role to share knowledge and train other disciplines on EHR basic practices, privacy issues, and application uses.

Accordingly, HIM professionals need higher educational levels to ensure that they are recognized for this role and possess the skills and knowledge necessary to provide such education to other colleagues. HIM also needs to take steps to ensure that in the future, the profession is viewed on a par with other managerial-level professional healthcare fields.
Opportunities and Benefits

Introduction
The work force and educational programs both stand to benefit from the creation of more highly educated, better prepared HIM graduates.

Global benefits
- HIM has an opportunity to further increase diversity of graduates. With graduate-level education as the standard for HIM entry-level jobs, students from other academic disciplines would find the entrée to HIM much easier to navigate. This diversity of backgrounds among HIM students would add to the strength of the HIM profession in terms of depth and breadth of knowledge and experiences linked by a common academic core at the graduate level. This would ultimately strengthen the collective voice and professional expertise of the HIM profession as recognized by the industry.

- Increased numbers of students with HIM career goals would be attracted to the programs. Although HIM baccalaureate programs currently produce entry-level professionals who are equipped to embrace the challenges of the profession, these programs have also historically faced the challenge of students who enter by default as a “second choice” career, want to work in healthcare but realize that direct patient care is not desirable to them; do not have the academic standing to be admitted to another health-related program; discover HIM by “accident;” or use HIM as a stepping-stone education to advance to another degree or discipline at the master’s level.

- The chance to more clearly articulate and market the HIM discipline as a continuous progression of career levels and roles, from associate and baccalaureate through master’s and doctoral study. Students, parents, and the public would recognize HIM as a strong, distinct, and scholarly profession, not an intermediate step to another discipline.
Opportunities and Benefits, Continued

To educational programs

♦ Graduate-level programs can generate higher tuition rates and spur opportunities for external funding. On many academic campuses, the tuition revenue realized from graduate-level students is greater than that of undergraduate tuition. In addition, faculty productivity gains may be realized through more opportunity for research, publications, and community and corporate partnerships, thus offsetting the need for large enrollments.

♦ The number of HIM professionals may increase through online programs. With burgeoning online programs that are particularly suited for individuals seeking a post-baccalaureate degree and a higher level of professionalism, the numbers of individuals entering the HIM profession may well increase. These types of students are often busy professionals, motivated to succeed, who would benefit from online programs.

♦ Greater flexibility in delivery of an HIM master’s degree program. There are many models by which programs may be delivered, thus allowing for the expression of philosophical and logistical differences among educational institutions. Such models include entry into:
 - A combined HIM baccalaureate/master program (three to five years duration)
 - An HIM master’s degree program after completion of a baccalaureate degree in any discipline
 - An online program following either of the above two options
 - HIM specialty tracks within an existing master’s degree program such as an MHA, health informatics, healthcare administration, etc.

Continued on next page
Opportunities and Benefits, Continued

To the HIM work force

♦ HIM professionals will be more effective in their jobs. Today, HIM professionals with a baccalaureate degree have knowledge that is critical to many decisions that are made at the EHR decision table. But they may find themselves educationally outweighed in the workplace. Better-educated HIM professionals will be better positioned to contribute ideas, knowledge, and expertise and will be more likely to be invited to the decision-making table.

♦ Master’s degree-prepared HIM professionals will be qualified for more visible positions within the healthcare industry. This will be accompanied by greater impact, recognition, higher salaries, and greater loyalty to the HIM profession, with less chance for migration of HIM talent to other disciplines.

♦ A more direct and elevated career path of progression for HIM professionals provides an alternative to the MBA/MPH/MHA graduate degree tracks available now, with a clearly defined pathway for individuals who want to stay within HIM core content.

♦ Better HIM adds value for the industry. HIM master-prepared graduates will be better able to meet the health information demands of the future which will, in turn, support improved patient care and benefit consumers.
Challenges

Academic

♦ Questions of academic risk if HIM moves to entry level at the master’s degree:

✓ Can our existing baccalaureate HIM programs implement this change?
✓ What will it take in terms of time and documentation to justify to college administrations, boards of education, state education bodies, regional and national accreditors, boards of regents, etc.?
✓ Will the numbers of programs be reduced?
✓ Can we clearly distinguish the discipline through graduate and doctoral levels to make the case for this recommended change?

♦ Certain programs might NOT be able to make this transition due to one or a combination of the following factors:

✓ The institution housing the program does not offer graduate programs (impacts only two CAHIIM-accredited programs)
✓ Lack of qualified faculty at the master and doctoral level with HIM credentials
✓ A lack of resources/funding available to recruit qualified faculty
✓ Inability to recruit qualified faculty even if funding is available
✓ Existing faculty may not be interested in affiliating with HIM programs due to lack of research funding, tenure positions, etc.
✓ Regional disparities in such areas as the community of interest, rural area programs, marketplace issues, etc.
✓ Aging faculty and program directors may not be willing to invest time to make the transition
✓ Low enrollment and lack of scholarly activities in existing programs could make it difficult to make the case for the transition to academic administrators
✓ Change in revenue base
✓ Change in workload for faculty (e.g., less teaching, more research-focused workload)
✓ Inability to provide scholarships or other program financial support for the graduate student
✓ Turf conflict caused by the meshing of boundaries with other graduate programs
Challenges, Continued

Work force

♦ Questions about the impact on work force:

✓ Can we meet work force demands both in number and preparation?
✓ Will the number of graduates be reduced?
✓ Can we forecast the new roles and skills needed in order to prepare the graduate with certainty?
✓ Will there be jobs for the master’s-prepared graduate?
✓ Will these jobs provide enough challenge and interest to the graduate?
✓ Will the curriculum, both didactic and experiential, prepare the graduate appropriately?
✓ Will employers support this transition, including paying higher salaries for such graduates?

♦ Loss of students who want only a four-year degree (typically based on age, interest, and financial aid). We might lose students who did not want to pursue a master’s degree or an associate degree. However, recent studies tend to counter this risk, as Collier’s research on baccalaureate degrees in the professions indicates.56 In the academic models presented, students not interested in graduate education or financially unable to pursue graduate study may not choose the HIM executive level of the profession, although they would have a significant knowledge base that would not preclude job opportunities or graduate pursuits later in their career.

♦ Disenfranchisement of current credentialed members; in particular, concerns regarding devaluation of their baccalaureate degree and RHIA credential.

Student

♦ Questions of risk for students include:

✓ How much financial aid will be available to graduate students?
✓ Will this transition hinder the progression of associate degree graduates?

Continued on next page
Challenges, Continued

Membership

♦ Questions of risk to AHIMA membership include:

✓ Will this transition disenfranchise current RHIAAs who were prepared at the baccalaureate degree level?
✓ Will RHIAAs prepared at the baccalaureate degree level be perceived as less capable in meeting work force demands or less competitive/desirable in the marketplace?
✓ How will this transition affect the RHIA credential?
✓ Will a new credential be designated for the master’s degree?
✓ If no new credential is designated for the master-prepared graduate, will that make it more difficult for programs to attract students or to market and differentiate the master-prepared graduate?

Acceleration and Deceleration Factors

Acceleration factors

♦ Projected EHR implementations (2014) give us a window of opportunity to implement these educational program changes.
♦ Current trends in growth of master’s degree programs in HIM and health informatics show an upward trend over the past three years.
♦ Other disciplines will take our HIM place at the decision-making table.
♦ Other disciplines will obtain the leadership jobs and commensurate salaries.

Deceleration factors

♦ HIM professionals may not be ready for such a transition for the profession.
♦ Inadequate data may fail to make a convincing story to the industry.
Suggested Actions

For consideration

♦ Survey the industry to validate emerging jobs for master’s prepared HIM professionals.

♦ Assess existing baccalaureate and master’s degree programs and developing graduate programs for characteristics in support of this transition.

♦ Carefully study the experiences of professions that have engaged in a similar professional and academic transition.

♦ Examine the value of the RHIA credential as it exists today and the testing level of competencies supporting the EHR.

♦ To successfully transition to a stage where HIM professionals are master’s degree-prepared upon entry into the work force, an effective communication strategy and plan are imperative. To build support from academic programs and the institutions in which they reside, AHIMA and others involved must:

✓ Develop talking points and transition models to deliver to academic programs.
✓ Develop a carefully crafted transition plan which includes broad, effective communication.
✓ Update the HIM framework for academic levels in an electronic environment and articulate the health informatics “umbrella” under which HIM and other emerging graduate degree tracks occur.
✓ Assign one or more work groups to develop different educational models.
✓ Elicit employer support early in the process to assist in developing a compelling presentation to the administrations of academic institutions.
✓ Adjust CAHIIM accreditation standards to reflect this transition.

Continued on next page
Suggested Actions, Continued

For consideration, continued

♦ Build support among the AHIMA membership and the industry in general to recognize an HIM master’s degree:

✔ Develop a communication plan that is targeted to the House of Delegates, the general membership, and industry stakeholders.

✔ Highlight the value of experience with current RHIA’s and employers and provide support for current RHIA’s during the transition.

✔ Develop a directional strategy for one or more work groups to review existing certifications and credentialing, including consideration of a different certification/credential for master-prepared HIM professionals.
Key Priority - Section B

Realign the Health Information Management Associate Degree with Work Force Needs by 2016
Issues - Setting the Stage

Background
The Bureau of Labor Statistics (BLS) describes the HIM associate degree level professional under the category of “Medical Records and Health Information Technician” as one of the top 10 fastest-growing professions nationwide. The BLS clusters what we commonly term a health information technician and the academic programs supporting them with those of medical transcription and cancer registry.

As of May 2007, there are 188 CAHIIM accredited HIM associate degree programs educating HIM generalists for the RHIT certification. In fact, the number of students enrolled in CAHIIM accredited programs since 2002 has steadily increased. Where associate degree programs have seen an increase on average of approximately 1,000 more students each year, baccalaureate enrollments have grown at a slower rate of 200-300 more students over the same time period. It is important to note that there are fewer baccalaureate programs (approximately four associate-level programs exist for each baccalaureate program).

Total Number of Students Enrolled

<table>
<thead>
<tr>
<th>Year</th>
<th>Associate</th>
<th>Baccalaureate</th>
</tr>
</thead>
<tbody>
<tr>
<td>2002-03</td>
<td>7,529</td>
<td>1,593</td>
</tr>
<tr>
<td>2003-04</td>
<td>9,199</td>
<td>1,820</td>
</tr>
<tr>
<td>2004-05</td>
<td>10,304</td>
<td>2,032</td>
</tr>
<tr>
<td>2005-06</td>
<td>11,682</td>
<td>2,433</td>
</tr>
</tbody>
</table>

Continued on next page
The Bush administration and federal government have outlined a plan to encourage electronic health records for all Americans by 2014. This has had many benefits, but increased attention to the term “health information technology” has both confused the marketplace and blurred the clarity of the HIM professional title. It is not clear how well the external marketplace understands this professional differentiation and the need for both types of skilled workers.

The Bureau of Labor Statistics projection of a 49 percent increased need for HIM professionals was based on its Occupational Outlook classification and collected in the 2000 census. The current federal administration and healthcare organization executives reference another need for computer information technology professionals oriented and experienced in healthcare delivery systems, workflow, and data standards to effectively design and maintain the computerized technical side of health information systems and the electronic health record. 58
Issue #1 - Accredited HIM Programs at the Associate Degree Level

Emerging job market
The current “one size fits all” HIM associate degree programs may not meet future practice needs. Already the more than 188 accredited programs are pressed to cover an increasingly complex set of entry-level competencies and knowledge at a basic level of understanding. In addition, more than 80 percent of the curriculum requires in-depth practice to attain competency and produce graduates who are work-ready for the job market.

HIM associate degree knowledge domains
Associate degree programs are the equivalent of two years in length. Many states place limits on the number of credit hours any one professional program can maintain. The five domains for HIM associate degree entry-level competence are:

- Health data management
- Health statistics, biomedical research, and quality management
- Health services organization and delivery
- Information technology and systems
- Organizational resources

Within these domains are 15 sub-domains covering clinical classification systems, privacy, confidentiality, and security of information, data standards, reimbursement requirements, regulatory requirements, human, financial and physical resources, and numerous competencies surrounding workflow management with EHR systems.

EHR impact
EHR implementation will dramatically alter the HIM landscape, particularly in data collection, retention, privacy, regional and national data reporting requirements, and the content and work processes surrounding the health record itself. At each junction, a technically ready work force will be needed to make the health information infrastructure a reality.

Continued on next page
This white paper proposes to revamp the associate degree HIM professional from a generalist to a strong technical specialist by 2016. A case could be made that the proposed revisions are needed even sooner as the electronic health record (EHR) technology rapidly advances. A 2007 *Boston Globe* article stated that Massachusetts “lacks enough people who know how computers work and who understand how doctors diagnose and treat diseases.” This is the core of HIM and fundamental to the success of EHR implementation and maintenance. Clearly, there is a need to re-anchor the value of the RHIT credential and the academic preparation behind it to new technical roles where currently the unique value of the RHIT is still not being recognized to its full potential.

During the next nine years, mandated changes not yet imagined will require the resources of a highly skilled HIM technical work force. In the near term, the graduating class of 2009 will need to be prepared to work with electronic health records for all HIM standard processes, changes in legal definitions for health information, computer-assisted coding, SNOMED-CT, severity-adjusted DRGs, the potential of ICD-10-CM, the external data needs of health information exchanges, and the patient-carried personal health record.

Where associate degree programs in HIM and health informatics are being re-designed around these emerging areas, it is also noted that there is a growing array of specialized registries such as birth, tumor, trauma, emergency department, cardiac, the Joint Commission and Medicare (CMS) core measures and data sets expanding the curriculum even further. In some cases, achieving specialized competence can lead to other professional certifications such as the Certified Cancer Registrar.

The need articulated in the AHIMA/AMIA work force report and the *Boston Globe* article highlights the market desire for trained technical experts and indicates yet another specialty track under HIM already developing in several colleges with HIM and IT coming together under the HIM department umbrella.

Obtaining the depth of skill set competence needed in various areas of the associate degree curriculum has been a common concern among educators. AHIMA and FORE launched the e-HIM Virtual Laboratory Project in 2006 to join with corporations to provide students with Web-based access to the latest electronic health record tools and applications with practice lessons for reinforcement of skills.
Issue #1 - Accredited HIM Programs at the Associate Degree Level, Continued

Employer expectations

Employers expect more from graduates in terms of job readiness, while the academic system, as just described, does not allow for the depth of coverage and practice in the HIM associate degree domains in two years. As a result, it is critical that organizations provide not only practice experiences while students are in school but encourage job shadowing and paid internships to help students bridge the gap between education and HIM employment. One such example is AHIMA’s Corporate Connections program, which is designed to motivate employers to create paid internships as demonstrated in other disciplines and industries.

E-HIM skills

There is a clear need to strengthen the associate degree to meet the demand for a workforce capable of innovating, implementing, and using health information technology. The ability to develop specialized skills in e-HIM will be critical to healthcare’s success. Preparing a stronger health information specialist workforce for the future through formal education begins with a restructuring of the curriculum to “make room” for development of special skills within the credit hour limitations of the associate degree. A redesign to allow specialization tracks built on a basic HIM core could provide the stronger, technically skilled HIM professionals employers want for varied e-HIM jobs.

Advanced educational opportunities

There is also a logical progression bridge from the HIM associate degree to baccalaureate and graduate levels. With a stronger technical base emphasizing various specialty skills, the pathway may be clearer than it is today for RHITs to proceed to higher academic levels. For instance, an RHIT could obtain the advanced core competencies and leadership skills to be competitive as a data analyst, data economist, decision support analyst, privacy specialist, manager, and other positions identified with the RHIA.

Graduate education further emphasizes specialty expertise coupled with critical thinking and analytical skills, research techniques, and executive management abilities. This would introduce associate degree graduates to a broader set of health information and informatics managerial roles and opportunities. Marketing more visible and defined career pathways to associate degree graduates could provide motivation and incentives to advance into baccalaureate and graduate programs.
Graduates of associate degree programs are finding the job market challenging, yet many remain enthusiastic. Fig. 5 illustrates the distribution of a subset of AHIMA RHIT-credentialed members who completed member profiles indicating their job titles. More than 40 percent are in coding roles and approximately 30 percent hold positions representing various forms of management: department director, assistant director, manager, supervisor, coordinator, or team leader.

Fig. 5. AHIMA 2007 Job Titles of Members with Associate Degrees and RHIT Credential

<table>
<thead>
<tr>
<th>Job Titles</th>
<th>#</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coding Professional</td>
<td>3,699</td>
<td>40.1%</td>
</tr>
<tr>
<td>Director</td>
<td>891</td>
<td>9.6%</td>
</tr>
<tr>
<td>Other</td>
<td>882</td>
<td>9.6%</td>
</tr>
<tr>
<td>Manager</td>
<td>868</td>
<td>9.4%</td>
</tr>
<tr>
<td>Supervisor</td>
<td>475</td>
<td>5.1%</td>
</tr>
<tr>
<td>Consultant</td>
<td>383</td>
<td>4.1%</td>
</tr>
<tr>
<td>Coordinator</td>
<td>328</td>
<td>3.6%</td>
</tr>
<tr>
<td>Registrar</td>
<td>199</td>
<td>2.2%</td>
</tr>
<tr>
<td>Medical Record Analyst</td>
<td>171</td>
<td>1.9%</td>
</tr>
<tr>
<td>Transcriptionist</td>
<td>149</td>
<td>1.6%</td>
</tr>
<tr>
<td>Administrator/CEO/COO</td>
<td>148</td>
<td>1.6%</td>
</tr>
<tr>
<td>HIM Faculty</td>
<td>148</td>
<td>1.6%</td>
</tr>
<tr>
<td>Data Quality Analyst</td>
<td>141</td>
<td>1.5%</td>
</tr>
<tr>
<td>Assistant Director</td>
<td>104</td>
<td>1.1%</td>
</tr>
<tr>
<td>Team Leader</td>
<td>82</td>
<td>0.9%</td>
</tr>
<tr>
<td>Compliance Officer</td>
<td>75</td>
<td>0.8%</td>
</tr>
<tr>
<td>Systems Analyst</td>
<td>65</td>
<td>0.7%</td>
</tr>
<tr>
<td>DRG Coordinator</td>
<td>58</td>
<td>0.6%</td>
</tr>
<tr>
<td>Customer/Client Representative</td>
<td>49</td>
<td>0.5%</td>
</tr>
<tr>
<td>Nurse</td>
<td>42</td>
<td>0.5%</td>
</tr>
<tr>
<td>Assistant Administrator/VP/AVP</td>
<td>38</td>
<td>0.4%</td>
</tr>
<tr>
<td>Privacy Officer</td>
<td>38</td>
<td>0.4%</td>
</tr>
<tr>
<td>Project Manager</td>
<td>36</td>
<td>0.4%</td>
</tr>
<tr>
<td>Assistant Manager</td>
<td>32</td>
<td>0.3%</td>
</tr>
<tr>
<td>Client Support Specialist</td>
<td>14</td>
<td>0.2%</td>
</tr>
<tr>
<td>IS/MIS Director</td>
<td>14</td>
<td>0.2%</td>
</tr>
<tr>
<td>Sales Representative</td>
<td>9</td>
<td>0.1%</td>
</tr>
<tr>
<td>Chief Information Officer</td>
<td>8</td>
<td>0.1%</td>
</tr>
<tr>
<td>Information Security Officer</td>
<td>6</td>
<td>0.1%</td>
</tr>
<tr>
<td>Safety Officer</td>
<td>3</td>
<td>0.0%</td>
</tr>
<tr>
<td>Case Mix Analyst</td>
<td>1</td>
<td>0.0%</td>
</tr>
<tr>
<td>Chief Financial Officer</td>
<td>1</td>
<td>0.0%</td>
</tr>
<tr>
<td>Health Information Management</td>
<td>1</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

TOTAL 9,158

Continued on next page
This was further examined by Garvin and Watzlaf in 2004 with 51 percent of coders reporting their academic background as an associate degree. This brings into focus a second key issue within the realm of HIM education at the associate degree level: that of the future of clinical coding and requisite formal training not just to meet today’s coding position vacancies, but the coded data needs of the future.

This white paper proposes to elevate the requirement for the AHIMA coding credentials to require an associate degree. Students completing existing coding certificate programs would need to obtain additional credits to earn an associate degree. Students seeking a coding career are often unaware of the distinctions between an academic model (training occurring in an accredited community college or technical institution) where college credits earned are transferable for academic career ladder advancement and a business model training conducted by individuals or organizations that provide training focused only on the occupation of coding, which run the risk of course work not recognized or transferred into academic institutions for career growth.

As of May 2007 AHIMA lists 33 approved coding programs. Graduates of these typically eight to 12-month programs will apply to take the Certified Coding Associate (CCA) or the Certified Coding Specialist (CCS) or Certified Coding Specialist-Physician Office (CCS-P) exam. It should be noted that five of the AHIMA-approved coding programs are located within CAHIIM-accredited HIM associate degree programs. In these instances, students enter a coding certificate program first, learn about HIM as a career, and continue on for the second-year associate degree requirements. It is also common for coding certificate programs located within degree-granting institutions to develop associate degree HIM programs seeking CAHIIM accreditation at a later point. Some AHIMA-approved coding programs are not college-credit eligible, but given the AHIMA coding curriculum model criteria and the rigor of the approval process, a level of quality assurance is maintained and recognized by the HIM profession, employers, and the academic community.

Continued on next page
Coding program approval

While AHIMA would like to see more associate degree HIM programs seek approval by the Approval Committee for Certificate Programs, the AHIMA model coding curriculum requirements are more rigorous than the coding complement of courses typically offered within CAHIIM-accredited HIM programs. For example, AHIMA approved coding programs must have a dedicated coding professional practice experience (PPE), which is not required in associate or baccalaureate degree programs. This has occurred because coding certificate programs are designed to provide a student with specialized, job-ready skills for a coding job, not the broader domains of competencies required of HIM practice found within the associate degree HIM programs.

As previously explained, the content and competency requirements for the associate degree HIM graduate to be successful on the RHIT exam are much broader in HIM practice areas with fewer coding questions than would be found on the CCA, CCS or CCS-P specialty certifications. Yet AHIMA membership data in Fig. 5 above indicates that 40 percent of associate degree graduates do seek coding positions, which may imply that employers seek the versatility of the HIM associate degree graduate and the potential for career ladder promotional opportunities.

2006 AHIMA coding professionals study

AHIMA’s 2006 study of coding professionals revealed that finding experienced coders continues to be a very significant problem among the nation’s employers. The study shows that 43 percent of employers seek applicants with the CCS credential, denoting a coder with more experience, and an additional 37 percent of employers seek applicants with the RHIT credential and an associate’s degree.

The typical explanation from employers is that RHIT applicants have a better potential for career advancement, are better prepared for supervisory roles, and understand the broader range of clinical as well as HIM functions supporting quality coding. The data implies that to be competitive and successful in the coding job market today, a coder needs (1) experience and (2) a coding credential coupled with an RHIT and/or an HIM associate degree.
The term “coding” in today’s healthcare environment is generally applied to many aspects of healthcare and will need to be reevaluated and redefined for 2016 as electronic health records are integrated with clinical terminologies and computer-assisted coding programs. The term “coding” may become more readily associated with a machine-driven action as opposed to a people-driven process. We may need to explore a new title to define the coder of the future, such as a coded data analyst, clinical data editor, or decision support analyst.

In HIM associate degree programs, first-year students learn how to code using various coding and classification systems and apply these within healthcare settings (acute, long term, home health, ambulatory, physician office, etc). This first year includes courses in medical terminology, anatomy and physiology, pathophysiology, pharmacology, and introduction to healthcare settings, documentation, regulatory, and other requirements.

In the future, however, we will need experts to process coded data, not to actually code the data. In 2016 it will still be important to teach “how to code,” but it will be more important to teach critical thinking skills that focus on the analysis and reporting of data sets and greater assurance of quality data. This will differentiate coding education programs from the myriad business model coding programs as requiring more than basic code assignment skills. It’s possible that as technology improves and systems become more sophisticated, enrollment in and purposes of the business model programs will diminish and enrollment in academic-based coding professional programs will increase as the need for the coding knowledge worker grows.
Future skills needed, continued

Greater focus on data reliability, data integrity, and data predictability will be needed. E-HIM coding professionals will need to understand their data to be able to readily explain variances to comparative or benchmark data (such as reimbursement and quality outcomes data). The student will be expected to be more astute in understanding case mix index and predicting hospital case mix each year with the regulatory changes that impact the reimbursement system. Math and data collection to support research could be required topics for the coding professional, as well as skills in auditing or editing coded data sets and recommending improvements to minimize variation and reduce compliance risk. With an associate degree, the coding professional of the future would be better equipped academically to be a key player under administrative leadership in reimbursement or documentation improvement, coded data-quality outcome reporting, or information technology services.

Rationale for integrating coding programs

Integrating coding programs into the accredited academic model would have the following effects:

♦ **Elevating and distinguishing HIM-trained coders** -- By bringing coding programs into the accredited associate degree-granting academic model, AHIMA could improve the numbers of students who are adversely affected by the “free market” medical coder/biller training programs that exist today, some of which lack the rigor or depth of content to adequately prepare a professional coder that employers will hire. Coding could be better recognized and served as a profession in the data quality realm by associate-degreed coding professionals who contribute to the solution to ensure quality coded data and fraud reduction, rather than contributing to the problem of inaccuracies in coded data. Coding professionals educated in this manner are better positioned for career ladder opportunities.

♦ **Strengthening HIT programs** -- Simultaneously, HIM associate degree programs can be strengthened by offering a more defined coding professional pathway such as a specialty track with additional coding education beyond that of the HIM associate degree generalist. The AHIMA model coding curriculum requirements include more didactic and laboratory content (three to four coding courses) and more skills development time to be spent in a dedicated coding professional practice experience. Because the pre-degree certificate programs in coding approved by AHIMA aim deliver coding professionals who are job ready, the curriculum is more focused to ensure a modest HIM background coupled with in-depth coding content and practice opportunities, while the associate degree model curriculum is designed to graduate a generalist with additional emphasis on HIM practice competencies.
This brings us back to the intersection of the two-part proposal presented with a recommended approach to redesign the HIM associate degree curriculum into specialty tracks, with the first year focused on HIM foundation courses and building core HIM competencies. In year two, the student would declare a track reflecting their interests. A student could take one or more tracks depending on their abilities and career aspirations. This proposed model would free up credit hours in the second year associate degree curriculum for intensive instruction in the chosen track. To this end, academic program positioning changes would include the following key modifications:

♦ Provide specialty track offerings within the HIM associate degree programs to encompass the RHIT generalist, as well as the coding professional, cancer registrar, and other emerging specialty certifications.

♦ Intensive instruction track -- Specialty tracks are common in the academic setting, particularly in professional programs, and reflect the realities of today’s workplace, which demands newly hired employees be work-ready at graduation.

Student demographics are a consideration here. In the most recent AHIMA survey of student members, 60 percent of students in associate degree programs indicated they were between 31-50 years of age. Today’s HIM associate degree student is typically a returning or career change student with additional obligations on their time and energies (full time job, home, and children) making them very pragmatic consumers.

These students want the most direct path from education to employment. Sixty-two percent want to earn a higher wage, and 50 percent want to impress current and future employers with their skills and abilities; 68 percent expect to find a job right after graduation. These students look for their investment to pay off quickly in the form of a new career and new earnings for themselves and their family.
| Repositioning benefits | ♦ Employment advantage -- Beyond the financial commitment the student has made to HIM, there is the additional investment of time and resources made by the academic institution. Failure to launch a successful program is a burden that affects students, the institution and the community, and ultimately the HIM work force message. There is work to be done to bridge the gap from student to employee for the associate degree RHIT prepared graduate as well as the newly certified coding professional. Having advanced skills at program completion or graduation would be seen as more desirable (and more hirable) by HIM employers.
♦ The e-HIM specialty at the associate degree level -- This specialty would focus on technical resources in support of maintaining information quality, accessibility, and uniformity within health information systems. Additional skills will be needed in the use of clinical vocabulary applications that enable computers to process and utilize healthcare data. As we move forward with the electronic health record, healthcare data uniformity and data standards will continue to be important issues for the HIM professional and will provide opportunities to become experts in these technical areas in healthcare organizations and other settings such as physician practices, public health agencies, and health information exchanges. |
Opportunities and Benefits

Benefits

- Opportunity to link with or offer a specialty track for computer science or information systems students interested in working in healthcare, which further strengthens the visibility, enrollments, and shared faculty on campuses for associate degree HIM programs.

- Coordinating multiple tracks under the HIM umbrella at the associate degree level further strengthens the numbers of graduates viewing AHIMA as a professional home.

- AHIMA would be the source of new and emerging specialty certifications engaging a broader base of undergraduate professionals beyond the strong coding professional base it maintains currently, thus adding new dimensions to HIM as a core discipline.

- Transitioning coding professionals to code editors, coded data quality specialists, and other roles utilizing computer-assisted coding (CAC) and more complex coding analysis jobs requires higher education at the associate degree level and focused, expert skill sets than that gained through a short-term coding certificate program.

- Self-trained coders may be inspired to seek an associate degree in the e-HIM track as a way to update their skills and move into new job opportunities.

- College programs would select the specialty track(s) they would offer based on community needs. With the growth of online learning offerings, HIM programs could emphasize multiple specialties and partner/collaborate with other HIM programs throughout the country. Not everyone needs to offer all specialties.

Continued on next page
Opportunities and Benefits, Continued

Benefits, continued

♦ Focused skill sets gained by having an associate degree with specialty tracks will better prepare students for a “career path.” Flexibility in the curriculum will maximize the educational value of the HIM associate degree.

♦ More diverse, better paid jobs for HIM associate degree graduates with specializations, where the current generalist HIM curriculum provides much content but little time to perfect specific areas of competence. Better prepared graduates then enter the work force ready to assume job responsibilities. This further supports the “bridge the gap” needs of employers and job placements for new graduates.

♦ Specialization provides education opportunities for the current RHIT and certified coding work force, emphasizing continuing education opportunities.

♦ Specialization provides opportunities for partnering with other disciplines or colleges to share resources, faculty, and increase the availability to a broader student audience.

♦ Growth in registrar specialties in the e-HIM environment are predicted with new roles for specialty registrars (cancer, birth defects, implants, etc.) as data is shared electronically in disease management and product tracking. There will be a growth of reporting mechanisms, including state, regional, and federal quality initiatives, which will look to the databases of registrars to provide the answers to quality issues.

♦ More predictable growth in numbers of candidates sitting for the RHIT credential as students would declare their direction at the second year of study. Growth in candidates seeking specialty credentials emphasizing unique skills and competencies would also be more predictable with a declaration of specialty tracks when enrolled.

♦ With inclusive membership, AHIMA invites all types of health information technically skilled professionals as active members, such that “certification diversity” is welcomed.
Challenges

Academic
- Not enough qualified faculty available to support the specialization model.
- College program student enrollments may be too small to offer more than one track.
- Lack of available and qualified faculty to teach the specialty track. For instance, they may have the HIM credential but not the academic qualifications.
- Impact of this plan on the RHIT generalist credential and exam competencies. Could result in a decline in applicants but an increase in specialty credential applicants.

Students
- Students are unaware of HIM careers and specialization options due to lack of career visibility, role models, and marketing, making it difficult to choose a specialty.
- Students may be unhappy with the specialty option they select, which could result in a longer time to graduation with a shift in required courses.

Marketplace
- Credentialed coders without degrees may fear that their jobs are at risk. These coders may move to other coding credentials outside of AHIMA.
- The market may fail to accept a coder with an associate’s degree.
- Market confusion about RHIT versus specialty credentials as job applicants.
- If no action is taken, continued loss of market share to non-degree coding programs and other coding certifications.
- There is legitimate concern that a 2016 implementation would be too late. An earlier implementation date is warranted as we are behind the curve in implementing changes for HIM associate degree and coding programs.
- Loss of market share in potential membership of others working in health information technology specialties seeking a professional home.
- Unknown effect on “global” coding issues, e.g. international coding certification or ICD-10 in other nations.
Acceleration and Deceleration Factors

Acceleration factors
- Build on current trend toward market responsive academic program development and work force readiness.
- Media buzz emphasizing the HIT need. Whether describing HIM or information technologists, the initiative to make this career more visible to the public exists.
- Continued demand by employers of qualified coders with at least one year of experience.
- Potential for growth of outsourced coding services with the proliferation of EHRs.
- The growth of associate degree education continues to focus on career redirection as traditional jobs in manufacturing and other areas diminish or move off shore, leaving a continual source of students for work force retraining in healthcare specialties.
- Potential national funding to support growth of associate degree programs for health information specialists and technologists.

Deceleration factors
- Other disciplines may see the opportunities and create new niche associate degree programs within the realm of EHR design, implementation, and management.
- Health informatics programs and the term “health informatics” in computer science may be attractive at undergraduate levels with potential for growth outside of AHIMA- and CAHIIM-accredited programs.
- National funding and grants may target short-term certificate programs to fill work force shortfalls.
- Lack of qualified faculty to support associate degree specialty programs.
- Constraints and inflexibilities within the academic structure and programs to cover all of the specialty areas.
Suggested Actions

For consideration

♦ Conduct employer research to validate marketability of associate degree HIM specialty skill sets.

♦ Conduct employer research to validate marketability of associate degree for coding professionals.

♦ Restructure/redesign the curriculum and competencies for the HIM associate degree level. This would represent a core degree area and specialization tracks including but not limited to the RHIT generalist, coding professional, data analyst, data quality manager, clinical data specialist, release of information specialist, cancer registrar, physician EHR specialist, health information technology specialist, and other emerging specialty certifications.

♦ Examine complementary changes in CAHIIM accreditation standards to facilitate specialty tracks.

♦ Evaluate the HIM generalist credential (RHIT), coding specialty certifications, and opportunities for new specialty certifications.

♦ Promote educational program flexibility to adjust specialization aspects to meet needs of communities of interest and market demand:

 ✓ Develop guidelines and models of relevant professional practice experiences (PPE) and internships based on these specializations.

 ✓ Assist both faculty and practice sites to create PPE experiences that support future career interests of the student, not the easiest method of implementation for the program or the site.

 ✓ Provide a critical evaluation of the role and outcomes of virtual professional practice experiences.

 ✓ Component state association and regional network participation to support and encourage networking of academic programs within a state or region.

 ✓ Introduce and encourage vendor-based PPEs for students interested in new career pathways and specialty practice areas.

 ✓ Evaluate and market the benefits of paid and unpaid post-graduation internships to employers.
Suggested Actions, Continued

For consideration, continued

♦ If an associate degree is justified as a prerequisite for coding credentials or if HIM specialties emerge at the associate degree level, clear pathways and guidance will be important for graduates to progress to baccalaureate and master’s degrees with greater focus on improving the credit transfer process for seamless academic progression.

✔ The AHIMA student recruitment Web site serves as a ready marketing resource to help prospective students navigate the assorted career pathways for specialty tracks at the associate degree level. See www.healthinformationcareers.com.

✔ Evaluate the AHIMA “Coding Basics” delivery approach to increase partnerships with college-based programs to deliver coding content as well as continuing education for associate degree individuals seeking coding specializations and credentials.

♦ Increase collaboration with industry (vendors, facilities, organizations, government) to educate in the classroom and through online means (e.g., bring industry leaders and content experts into the “virtual” classroom via the Web).

✔ Seek external funding sources and support to create community models linking academic programs and employers. The aim is to move students from the classroom to internships to permanent employment and to benefit coding program, HIM associate degree, and other specialty graduates. Both graduates and employers could benefit in terms of quality of coding professionals, HIM professionals, and a reduction in lost productivity.

✔ The e-HIM Virtual Laboratory will need to be responsive to various technologies with a continual expansion of vendors to accommodate EHR growth in the industry.

♦ Develop a communication strategy and plan with “talking points” to carry the message to internal and external stakeholders and customers on the benefits of associate degrees -- not only to AHIMA members and education programs, but to the industry itself and employers.
Key Priority - Section C

Prepare an Effective, Qualified Pool of Health Information Management Faculty by 2016
Issues - Setting the Stage

Introduction

Today, AHIMA aims to support consistent, high-quality academic preparation of more than 14,000 students across 235 academic programs and to grow additional academic programs at the master’s and doctoral levels. AHIMA also has committed to deliver on the recommendations of the AHIMA/AMIA report “Building the Work Force for Health Information Transformation.” The report recommends preparation of a stronger health information specialist work force through formal education, ensuring faculty competencies in the electronic information environment, and building a network of health information education leaders. That commitment will require both increased academic preparation of HIM educators and significantly more practitioners who choose to become educators.

At the same time, AHIMA aims to elevate the external view of HIM professionals. These highly skilled, committed individuals need professional recognition to go along with the complexity and importance of their work, and that recognition will only come with graduate-level academic education.

This section examines the challenges of the academic environment today and outlines strategies to help academic programs meet future manpower targets.
Challenges of Academia

Background

Producing the next generation of the HIM workforce requires an academic infrastructure sufficient to train large numbers of workers at a higher academic level. This need was identified in AHIMA reports in 1986 and 1999, but it remains unresolved to this day.

In 2007, an informal tally of online job postings reveals 21 education openings in as many colleges across the nation, over two-thirds of which are program director positions. Clearly, leadership and program stability are at risk in these institutions. Can we afford to wait another decade to resolve this crisis?

HIM educational trends

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Issue: Lack of a sufficient number of qualified faculty</td>
<td>Issue: Decreased qualified faculty pool for HIM</td>
</tr>
<tr>
<td>• Lack of funding for teacher preparation workshops to train qualified practitioners</td>
<td>• HIM professionals not getting advanced degrees necessary for success as a faculty member</td>
</tr>
<tr>
<td>• Lack of formalized support system for new faculty</td>
<td>• Lack of doctoral degrees</td>
</tr>
<tr>
<td>• Lack of incentives to choose education as a career path</td>
<td>• Graying of professorate</td>
</tr>
<tr>
<td></td>
<td>• Aging/retiring faculty</td>
</tr>
</tbody>
</table>

Faculty shortage

The recognized shortage of qualified faculty is made worse by the high reliance on part-time and adjunct faculty (69 percent of faculty are adjunct in associate degree programs; 62 percent of faculty are adjunct in baccalaureate degree programs). We already rely too much on faculty who are not primarily committed to careers in education. While many of these are outstanding teachers, the demands of their jobs may make them less available to the students and create scheduling problems. Together, these issues should raise concerns across the profession about the future of HIM education and our ability as a profession to deliver on the goals of the work force report as well as meeting the Bureau of Labor projections. While each of the key priorities is essential, no challenge is more formidable or long standing than generating an effective pool of qualified faculty.

Continued on next page
Challenges of Academia, Continued

Faculty salaries

Adding to the shortage of educators is the perception that faculty salaries at our nation’s colleges and universities are not increasing at a pace competitive with salaries of those in practice. But in 2007 the *Chronicle of Higher Education* reported that for the first time in three years, faculty salaries in the U.S. have outpaced the rate of inflation.\(^7^0\) Average salaries for full-time faculty climbed 3.8 percent in 2006-07 compared with the prior academic year, compared with a rate of inflation for the same period of 2.5 percent. The average salary for a full-time faculty member was $73,207, going as high as $136,689 for full professors at private doctoral universities. In comparison, assistant professors at community colleges earned an average of $48,730.

Pay inequities

The *Chronicle* stated that inequalities do exist among professors and professions, even on the same campuses.\(^7^1\) For example, business professors at the assistant professor level make 102 percent more than English professors. In computer science departments, faculty earn 60 percent more than other departments. Most significant is that the difference is wider among assistant professors than full professors, with higher pay for assistant professors because it is harder to attract and keep younger faculty.

Educational institutions’ values are changing as they struggle financially and spending decisions change. This creates both an issue and an opportunity for HIM. Programs of long standing may find greater challenges on their campus, while programs with institutional enthusiasm to launch a new program with “techie” flair and apparent national work force demands behind it may find the academic environment and compensation more amenable.

<table>
<thead>
<tr>
<th>Faculty salary comparisons</th>
<th>HIM</th>
<th>Healthcare Administration</th>
<th>Nursing</th>
<th>Physical Therapy</th>
<th>Occupational Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instructor</td>
<td>$54,403</td>
<td>$62,124</td>
<td>$57,315</td>
<td>$65,679</td>
<td>$56,934</td>
</tr>
<tr>
<td>Assistant Professor</td>
<td>$59,965</td>
<td>$70,613</td>
<td>$74,446</td>
<td>$73,736</td>
<td>$69,183</td>
</tr>
<tr>
<td>Associate Professor</td>
<td>$74,197</td>
<td>$85,529</td>
<td>$80,626</td>
<td>$81,877</td>
<td>$81,068</td>
</tr>
<tr>
<td>Professor</td>
<td>------</td>
<td>$108,066</td>
<td>$97,823</td>
<td>$98,752</td>
<td>$100,838</td>
</tr>
<tr>
<td>Clinical Coordinator</td>
<td>$63,043</td>
<td>$69,325</td>
<td>$75,182</td>
<td>$71,930</td>
<td>$66,675</td>
</tr>
<tr>
<td>Program Chair</td>
<td>$84,392</td>
<td>$103,688</td>
<td>$98,817</td>
<td>$106,127</td>
<td>$102,724</td>
</tr>
<tr>
<td>Average age of faculty</td>
<td>47</td>
<td>52</td>
<td>54</td>
<td>47</td>
<td>53</td>
</tr>
</tbody>
</table>

Source: ASAHP 2006 Average Salary of Allied Health Faculty
The 2006 AHIMA survey of 356 HIM educators reported somewhat lower salaries than for the total pool of college and university faculty data presented by the Chronicle and totals reported by the Association of Schools of Allied Health Professions for the same time period. An average of 31.4 percent of respondents reported salaries between $45,000 and $70,000; another 14 percent had salaries between $70,001 and $100,000. A sizable percentage (55 percent) of educators earn salaries below $45,000. The survey also found that 26.6 percent of educators supplement their incomes by working as consultants, coders, writers, and other types of jobs.

Continued on next page
Challenges of Academia, Continued

Practitioner vs. educator gaps

The notion that professionals hesitate to leave practice to become educators as the wages are significantly lower is believed to be a key factor in the faculty shortage. According to the 2006 AHIMA salary survey, HIM practitioners working in consultant/vendor settings had an average salary of $84,383 and integrated delivery system HIM directors reported average salaries at $70,501.\(^7\) HIM practitioners working in hospitals reported $53,389 a year, on average. In the final analysis, the gap between salaries of HIM practitioners and HIM educators certainly exists, but is not as dramatic as is often perceived.

2007 AHIMA membership data shows that the median salary for HIM professionals (practitioners and educators) with a master’s degree or higher across all job categories is $86,728. This drops to $75,136 for baccalaureate and $60,613 for associate degreed HIM professionals.

HIM program management challenges

In addition to pay differences, the faculty requirements necessary to manage a successful HIM program pose problems. Because HIM is not yet a formalized discipline (as chemistry, biology, physics, or sociology are) and is transitioning quickly to new practices and requisite knowledge, students need education and experiential training from faculty who specialize in a variety of content areas as well as faculty fluent in current practice needs.

Most HIM programs include a wide range of specific content grouped in the domains of health information data management, clinical classification systems, information technology and systems, and organizational leadership. As the field advances with the implementation of the EHR and more complex organizational structures and information technologies, the breadth and depth of training for the HIM professional expands even further. The faculty expertise needed to teach these varied and complex topics must be drawn from a number of specific disciplines, as well as from HIM practitioners.

Finding faculty who have the content expertise, the willingness to apply that expertise to HIM academic programs, and advanced academic degrees at the master’s and doctoral levels is the challenge.

Continued on next page
Currently, just over 50 percent of HIM faculty report having a master’s or doctoral degree. The rule in many educational institutions is that the faculty should have a degree one level higher than the students they teach. While education programs in HIM that produced students with associate degrees or baccalaureate degrees could utilize faculty holding baccalaureate or master’s degrees for the specific level of program, realizing growth in HIM graduate educational programs will require more doctorally prepared faculty.

Consequently, the current complement of master’s trained faculty will not be enough to support master’s level education. The estimates are that fewer than 200 AHIMA members currently hold doctoral degrees, and not all are working in academic settings.

To complicate this further, faculty retirement rates can be predicted using the Bureau of Labor retirement rate of 2.5 percent annually, with few candidates being produced to fill these positions. The American Association of University Professors reported in a survey of over 500 public and private colleges and universities that only 19 percent reported that retiring faculty was of high concern, and only recently are institutions beginning to recognize the complexity of the retirement process. Thirty-two percent of responding institutions did indicate implementing phased-retirement programs to keep older faculty and continue to benefit from their services in some way.

HIM is just beginning to see the wave of “baby boomer” retirements. With initial faculty shortages coupled with retirements, where are the additional faculty needed going to come from, and what changes need to be made in education models and accreditation standards to accommodate this situation?
Strategies to Address Faculty Needs

Key Priority C
Ball stated in 1992 that “the challenges we face cannot be met in traditional classrooms by traditional teachers with traditional students. We need to enlist all our resources and target all our practitioners. We need to call upon all the innovations available. Further, such education requires a cross-disciplinary approach. We must strengthen faculty development programs and offer information services if educators are to prepare students for a new information environment.” Today, these words are still true.

Faculty retraining
One solution may be to retrain existing faculty. Some may be able to enroll in a variety of doctoral programs such as education, health administration, public administration, public health, or informatics on their own campus, at other colleges, or via distance learning to attain the necessary master’s or doctoral degree.

According to Benoit and others, many institutions “grow their own” doctorally prepared faculty by allowing them to pursue terminal degrees while teaching in the program. This strategy will increase the numbers but presents a number of logistical challenges. Ironically, many educators have good teaching skills, experience, and knowledge of HIM, but they cannot quickly adjust their educational level. AHIMA’s 2006 educator survey indicated that 64 percent of current faculty are 45 years of age or older--already at the middle or late stages of their career. They may not be willing to invest in additional education. Others may not succeed in the doctoral education process.

Continued on next page
Strategies to Address Faculty Needs, Continued

Existing doctoral programs

A second strategy is to partner with existing doctoral programs in related disciplines so that they include a sufficient portion of HIM knowledge and skills such that graduates have the requisite qualities and interest to teach in an HIM program.

Ideally, these programs would recruit HIM credentialed students, but would include students from other varied health-related academic backgrounds. This strategy would require a plan, time, marketing efforts, and linkages between AHIMA undergraduate programs and existing doctoral programs.

Other disciplines

A third strategy would be to entice faculty already teaching in other disciplines in health-related programs to join the faculty of HIM programs. This approach has been used successfully across all levels of HIM academic programs. There are presumably many faculty able to teach components of the expanding curriculum who may not have HIM credentials but have requisite skills and experience in computer science, data analytics, health administration, or business skills sufficient to contribute to the HIM educational experience.

This approach also takes time and commitment by existing HIM faculty and program directors to ensure that such faculty understand HIM competencies and knowledge and that they keep current in knowledge and practice.

Stand-alone doctoral programs

Fourth, it may be possible to develop HIM as a stand-alone doctoral academic discipline. Other professional master’s degree programs, such as health administration, have been successful in producing faculty with professional doctorates. Many of these discipline-based graduates may be more practice oriented rather than research oriented, such that they have a broad knowledge of the field and can teach at the level necessary to produce quality HIM graduates. This strategy would take time to implement but could fit within the 2016 vision.

Continued on next page
Strategies to Address Faculty Needs, Continued

Team teaching

Finally, if these strategies take too much time and have limited potential for success, another strategy is to pair doctoral faculty with experienced practitioners. A team consisting of a PhD and perhaps several master’s-prepared professionals to share teaching and other academic duties may go a long way to meet manpower needs.

This team teaching strategy ensures that the course leader is doctorally prepared, thus meeting institutional and accreditation requirements. It also brings professional expertise into the classroom to meet content requirements. This approach allows an academic program to leverage its limited number of PhD faculty.

Physical therapy has adopted this approach. General and specialized clinical practice have become part of the full-time core teaching cadre, and a large percent of the curriculum is provided by individuals who are qualified to teach by their professional credentials rather than by traditional academic degrees. 79

In summary

As reported by Rhodes, structural reform remains elusive in American academic culture. 80 The rigidity of departmental structures and faculty appointments continues to limit the ability of colleges to adapt and respond to new circumstances. Change tends to be laboriously incremental with a time lag between the decision to make it happen and the ability to carry it out.

Just as HIM practitioners struggle to be recognized and to sit at the decision table in the electronic healthcare workplace, so do our educators struggle for a greater presence and leadership roles on their campuses. AHIMA is positioned to take a leadership role in shaping this future.
Opportunities and Benefits

Benefits

♦ Elevated respect for the HIM professional discipline.

♦ Significantly increased body of knowledge through more practice-based research.

♦ Strong growth in graduate-level HIM academic programs at doctoral colleges and research universities.

♦ The chance to sustain and grow associate and baccalaureate degree HIM programs in underserved areas nationally and globally to improve health information and data standards.

♦ Increased opportunities to obtain research grants and other external funding sources.

♦ HIM faculty routinely sought as collaborators in biomedical, translational, and health informatics research.

♦ Higher faculty salaries and campus recognition of the HIM discipline.

♦ Expert recognition in the healthcare environment and on college and university campuses.

♦ Increased numbers of scholarships for students.

♦ Greater opportunities for professional recognition and contributions within HIM.

♦ Biotech, pharmaceutical firms, systems designers, and other emerging employers may be more welcoming to master’s/doctorally prepared faculty seeking student practice experiences. They may also develop paid fellowships or scholarships.
Challenges

<table>
<thead>
<tr>
<th>Marketplace</th>
<th>Lack of HIM doctoral faculty is a barrier to growth and strength of the HIM profession to be competitive within the realm of growth of the various informatics disciplines.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Our leadership in the management of health information in healthcare organizations could be supplanted by educators from medicine, nursing, public health, and other disciplines.</td>
</tr>
<tr>
<td></td>
<td>Salaries in education are not as competitive with marketplace opportunities for HIM professionals with advanced degrees.</td>
</tr>
<tr>
<td>Academic</td>
<td>Faculty pool is larger at the HIM associate degree level.</td>
</tr>
<tr>
<td></td>
<td>Lack of qualified faculty to teach new curriculum at existing colleges.</td>
</tr>
<tr>
<td></td>
<td>Scholarship requirements may raise the body of knowledge in the profession while at the same time deterring those faculty members who are expert practitioners but do not have a research background or the necessary expertise to apply for or stay in faculty positions.</td>
</tr>
<tr>
<td>Students</td>
<td>Difficult to obtain doctoral degrees for HIM professionals when public colleges and universities want full-time doctoral students and the cost of private doctoral programs is high.</td>
</tr>
<tr>
<td></td>
<td>Once earning doctorates, HIM professionals may pull away from the HIM field to do research and teach in other academic programs.</td>
</tr>
<tr>
<td></td>
<td>Many new doctoral graduates are not mobile to support development of new HIM master’s degree programs in top doctoral/research universities.</td>
</tr>
</tbody>
</table>
Acceleration and Deceleration Factors

<table>
<thead>
<tr>
<th>Acceleration factors</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>♦ Increased development of new HIM baccalaureate and master’s degree programs demand more qualified faculty.</td>
<td></td>
</tr>
<tr>
<td>♦ Current informatics educators quickly realize the missing link in their abilities and research without recognizing that link as HIM.</td>
<td></td>
</tr>
<tr>
<td>♦ Bureau of Labor prediction of increased need for HIM specialists.</td>
<td></td>
</tr>
<tr>
<td>♦ Health informatics is a new campus buzz word.</td>
<td></td>
</tr>
<tr>
<td>♦ Federal legislation (such as HR 1467) puts HIM at forefront with link to success of the electronic health record.</td>
<td></td>
</tr>
<tr>
<td>♦ Increased government spending for health information/informatics research could entice new faculty with the option of funded research, but research is a different interest from those of typical HIM practice-based professionals, as well as classroom educators or adjunct faculty members. What results is a bifurcation of HIM faculty – the majority of whom choose to come to education purely to teach while the profession attempts to grow the HIM researcher from a highly practice-based profession.</td>
<td></td>
</tr>
<tr>
<td>♦ Growth of new HIM programs in for-profit educational institutions demands more faculty.</td>
<td></td>
</tr>
<tr>
<td>♦ College administrators seeking HIM leaders as faculty, department chairs, and deans.</td>
<td></td>
</tr>
<tr>
<td>♦ AHIMA’s e-HIM Virtual Laboratory draws more students and could draw more practitioners to education with new support tools and resources.</td>
<td></td>
</tr>
<tr>
<td>♦ Colleges continue to increase use of adjunct faculty; increase in online programs could require more adjunct faculty who can use online technologies.</td>
<td></td>
</tr>
<tr>
<td>♦ Beyond baby boomers, the next generation of HIM practitioners may seek job changes and turn to teaching roles.</td>
<td></td>
</tr>
<tr>
<td>♦ Healthcare delivery system itself may offer increased opportunities for HIM consulting as a supplement incentive to faculty salaries.</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page
Deceleration Factors

- Growth in new job opportunities in HIM continues to draw practitioners away from thoughts of becoming an educator.
- Demoralized college administrators may be unsuccessful in finding qualified HIM leaders for faculty roles, resulting in program closures.
- Informatics and healthcare administration graduate programs grow faster, absorbing HIM.
- Regional accreditation standards for colleges and universities hamper use of adjuncts.
- Academe does not change from its traditional ways of promotion and tenure, ranking programs, campus management, etc.
Suggested Actions

For consideration

♦ Raise visibility of higher education and faculty status in HIM to enhance recruitment.
 ✓ Continue to recruit and develop new faculty who are essential to accomplish growth of HIM at the graduate level, as well as sustain HIM programs at the associate and baccalaureate levels.
 ✓ There is a need for new/expanded faculty recruitment initiatives, retention, and development.
 ✓ Promote the benefits of college/university teaching: flexible hours, desire to work with students, desire for career change, ability to take summers off, variety of work activities, balance work life, personal independence in work.
 ✓ Establish, support, and market the credibility and depth of HIM faculty.

♦ Encourage models to blend doctoral faculty with practitioners to provide course content.

 ✓ Current numbers of experienced, doctoral prepared HIM faculty are limited; we need new models, teaming doctorally prepared with practice specialists to deliver relevant content in curricula.

♦ Develop formal relations with vendors to support faculty development, curriculum development, research, laboratory practice, and scholarships.

 ✓ Corporate partnerships - Look for opportunities to partner in new ways with information systems technology vendors to support relevant content and laboratory practice, research opportunities, faculty internships, and scholarships.
 ✓ Strengthen AHIMA Corporate Connections program with endowments for internships, fellowships, and research in conjunction with FORE.

♦ Design and implement a methodology to track career growth of HIM practitioners and educators

♦ Design and promulgate initiatives to bring faculty with complementary academic backgrounds to HIM programs.

 ✓ Research models of HIM programs with “mixed” faculty of HIM and other disciplines.
 ✓ Develop alternate pathways to others with complementary academic backgrounds to become credentialed with other degrees.

Continued on next page
Suggested Actions, Continued

For consideration, continued

♦ Identify the “jewels” among HIM programs as models for others.

♦ Re-evaluate accreditation standards requiring HIM credentialed professionals at the helm of HIM programs at all academic levels.

♦ Create interest in HIM doctoral programs by securing support from the Health Resources and Services Administration and other government agencies.

♦ Lead negotiations for consortia (at doctoral level) through several colleges to share faculty expertise.
Notes

18. Ibid., pp. 60-64.
19. AHIMA and AMIA. “Building the Work Force for Health Information Transformation.”
22. Ibid.
23. Ibid.
24. Ibid.
33. “Coding Professionals Today, Tomorrow and the Future: A Workforce Study.”
38. “Preparing Tomorrow’s Professionals: A New Framework for HIM Education.”
40. “Embracing the Future.”
42. “Embracing the Future.”
44. Hersh, William. “A Tale of Two Professions: Extending the OHSU Biomedical Informatics Program to Health Information Management.” Presentation to the Oregon Health Information Management Association, 2007.
45. 10,000 Trained by 2010 Act. 110th Congress, HR 1467.
50. Ibid.
55. Montgomery, L.E. “Health Information Manager (HIM) Job Analysis/Master’s Degree Level.”
58. Ibid.
60. “Building the Work Force for Health Information Transformation.”
63. Garvin, Jennifer, and Valerie Watzlaf. “Current Coding Competency Compared to Projected Competency.”
64. “Coding Professionals Today, Tomorrow and the Future: A Workforce Study.”
65. AHIMA 2006 HIM student survey, unpublished.
69. “Building the Work Force for Health Information Transformation.”
71. Ibid.
72. “2006 HIM Educator Survey.”
73. “The Results Are In: 2006 Salary Study.”
74. “2006 HIM Educator Survey.”
78. “2006 HIM Educator Survey.”
80. Rhodes, Frank H.T. “After 40 Years of Growth and change, Higher Education Faces New Challenges.”
82. 10,000 Trained by 2010 Act. 110th Congress, HR 1467.

References
<table>
<thead>
<tr>
<th>APPENDIX A: JOB TITLE</th>
<th>INDUSTRY</th>
<th>RESPONSIBILITIES</th>
<th>EDUCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical Transformation Data Coordinator</td>
<td>Health Services Organization</td>
<td>Oversee data gathering and research/evaluation support needs of area nursing transformation project. Compile patient outcomes, service utilization, and financial data files from existing administrative and clinical databases.</td>
<td>Bachelor degree in health services, master’s degree preferred. RHIA certification highly desired</td>
</tr>
<tr>
<td>Product Development Analyst</td>
<td>Health Systems Vendor</td>
<td>Manipulation of large data sets, assignment of APR-DRGs, PCC and PPR information, define and evaluate statistical results, model simulation, and repost design and generation.</td>
<td>Bachelor degree Required, master degree in healthcare informatics preferred</td>
</tr>
<tr>
<td>Director of Clinical Informatics</td>
<td>Hospital</td>
<td>Coordinating aspects of planning, design, development, implementation, maintenance, and evaluation of the clinical information system.</td>
<td>Bachelor degree required. Master’s degree in healthcare informatics preferred</td>
</tr>
<tr>
<td>Senior Analyst</td>
<td>Government Agency</td>
<td>Survey development and execution, data management and analysis, develop reports and presentations, and provide project promotion, coordination, planning, and management.</td>
<td>Master’s degree in public health or related health field</td>
</tr>
<tr>
<td>Health Information Administration Program Director</td>
<td>Academic</td>
<td>Organization, administration, program, and curriculum design and development, program evaluation, and all other aspects of the HIA program.</td>
<td>Master’s or doctoral (preferred) degree in appropriate field, and RHIA certification</td>
</tr>
<tr>
<td>Senior Consultant, Health Industry Relations</td>
<td>Consulting</td>
<td>Develop and implement a clear strategy for regional health information organization integration. Develop business relationships with care organizations and develop community and clinical advisory boards.</td>
<td>Degree in communications, business or healthcare related field, master’s degree preferred</td>
</tr>
<tr>
<td>Clinical Terminology Specialist (Lexicon)</td>
<td>Health Information Systems Vendor</td>
<td>Navigate SNOMED-CT and research existing concepts and concept models, modify concepts and standards such as ICD-9, LOINC, HL7, data modeling and design in prototyping, and assisting in the editorial QA process.</td>
<td>Master’s degree in informatics or bachelor’s degree, relevant lexicon experience</td>
</tr>
<tr>
<td>Director, Regional Ambulatory Coding/Data Quality</td>
<td>Healthcare Organization</td>
<td>Provide strategic leadership and direction to the ambulatory coding/data quality division of HIM services. Continually strive to evaluate, streamline and manage all aspects of the coding and reimbursement process and protocols of ambulatory services</td>
<td>BS or BA in HIM, master’s degree preferred</td>
</tr>
<tr>
<td>Manager Clinical Standards Administrator</td>
<td>Non-for-profit Hospital System</td>
<td>Analyze, support, develop, coordinate, and maintain standardized clinical content of the organization’s healthcare information system.</td>
<td>Bachelor degree, master’s degree in healthcare specialty desired</td>
</tr>
</tbody>
</table>
APPENDIX B – Comments from Assembly on Education (AOE)

More than 300 HIM educators attended the AHIMA Assembly on Education (AOE) Summer Symposium July 30-August 1, 2007 in Chicago, IL, where a draft version of the Vision 2016 Blueprint was introduced by the chair of the HIM Education Strategy Committee. Opportunities to discuss the concepts presented included an afternoon Intellectual Café of table top discussions, an open forum, written comments, and the post-AOE online conference survey. All educators were notified via e-mail of the draft version posted on the educators’ private online community of practice. A summary of the educators’ comments follows.

Key Priority A: Transformation of HIM to a Graduate-Level Profession by 2016

- Need to be recognized at an advanced degree professional level for credibility.
- Physical Therapy devised an independent/strategy to penetrate higher level of practice. AHIMA should have done these 10 years ago. We are way behind the curve. This is not a matter of urgency but rather a matter of crisis. To parallel the situation to the US terrorist alert system, AHIMA members are in the red zone not the yellow zone.
- I understand that the COC is exploring the option of allowing persons who do not have a degree from a CAHIIM accredited program to take the RHIA exam. Such an option undermines the Vision 2016 White Paper philosophy that the practitioner of the future will need more formalized education. The exam is only one component of the professional credentialing process. Specialized education is the hallmark of a profession. To take a position that any type of education plus experience is the equivalent of a specialized HIM education runs counter to the spirit of Vision 2016. I would implore the Board to fully support Vision 2016 and not pursue credentialing of individuals who lack the formal education that Vision 2016 mandates.
- Are we saying we want everyone to have a master’s or an HIM-Master’s?
- Concern about the “match” between the future educational blueprint and employment. So many positions still have lots of manual/paper processes. Concern will be having too few RHITs and one too many MS-HIMs.
- There are peripheral issues such as needing a PhD to teach in MS programs due to regional accrediting requirements.
- For universities that already have established BS programs, offer 5 year “fast track” to MS with areas of specialization (e.g. IT; makes best use of existing faculty and can reasonably access PhD to teach in 5th year to meet regional accrediting requirement).
- For universities that do not have established BS programs, offer 2 year HIM MA with general and specialty tracks (CAHIIM accredited).
- May be problematic to find enough doctoral prepared faculty (even to team-teach).
- Programs may hesitate to go to master’s HIM level – If you build it, will they come?
- The white paper is an excellent body of work – congratulations. Moving toward the goals projected is important and comes at a time when employers are demanding higher level skills in EHR and data management. I support the formation of a master’s level credential, but hope it will be portfolio based, allowing a broad background in information and IT, thus helping to meet the 10 x 10 Wu Bill legislation intent. Perhaps the credential could be offered in partnership with AMIA.
- Keep BS program; add MS credential.
- Make flexible; provide lots of samples/examples early on.
- Perception externally that we are all coders.
- People who go to work for software vendor or other non-hospitals don’t need credentials; relevant education is what is needed.

Can our baccalaureate programs deliver on master’s level education? What are some models to make it work?

- Yes, if they have been teaching the competencies already.
- Challenge is at each school; number of faculty ratio per graduate; will doctorates be required?
- Masters programs are generally smaller, so what does that do to work force needs?
- We will lose some programs, but we may gain some at places where they already have master’s and want a health information track.
- External brand marketing needs to happen.

Do you see elevating the criteria to a master’s degree for the RHIA credential? Or do you see a third credential?

- The credential should transition to a master’s level – could add an “M” after it -“RHIA-M” as the Rad Techs.
- Master’s students have a RHIA option now if they want to sit for exam.
I feel that a master’s program has its place and provides a level of expertise that is needed to address some complex information systems. However, I think it is a serious mistake to require the master’s degree for RHIA certification. I feel this would significantly decrease the pool of RHIAAs at a time when the need is increasing. If you do that, you are only inviting other professions to step in and fill the gaps. Additionally, it hurts our four year programs that are not in a position to offer master’s programs.

What about current credentialed RHIAAs who may be very accomplished in the profession? Will there be progression programs for them? How will a seasoned RHIA feel about this change? Will they think their RHIA/experience is “devalued”?

If master’s credential is created what will happen to the RHIA credential? Cease to exist or maintained by AHIMA?

Needs to be a backward link to credential; a higher level of education; value of credential.

Employers do want credential and people want masters instead of repeating bachelor’s degree.

May need to “grandfather” people in.

Consensus was not to have a 3rd credential, but to transition the RHIA.

What disadvantages would the HIM profession face if we continued with a baccalaureate degree as the terminal degree? What advantage would there be for the HIM profession to remain terminal at the baccalaureate degree?

- Associate degree is terminal for HIM in the public view and we have a perception problem.
- Bachelor’s is becoming like a high school diploma… now need a master’s.
- Advantages of master’s – be on a level playing field with others - many knowledge clusters & competencies are at master’s level already.
- Disadvantages – will we lose students? Cannot hire people that exceed educational level.
- How do we sell it to employers & other stakeholders? Has to be marketed to make it relevant.
- Coding is a technical skill and should not be part of the master’s degree.
- Notion that a Master’s degree overcomes the misunderstanding of what is an RHIA.
- Every report is calling for health informatics and we won’t get there without master’s.

What are the barriers to a Master’s level degree program?

- Faculty development, student financial aid, students that don’t have the intellect to be successful.
- What about practicums? How to get places at the higher level to take students?
- Lack of information about how employers feel about the subject; need to determine employer’s acceptance of Master’s level professionals.
- Keep Bachelor’s as a generalist curriculum and use Master’s to specialize at the higher levels.
- Today, we’re losing students to MBA/MHA who know they want a Master’s.
- Currently very few of the BS students care to go on for the MS; they think it’s more of the same (but it’s not). Point is we need to do a better job of distinguishing.
- Look at the EHR decision tables we should be sitting at. These are the jobs that the new MS graduates will fill.
- Is it Master’s at a terminal level or an entry level? Confusion over the term; it’s actually both.
- Are we elevating the criteria to a Master’s degree, or a separate Master’s credential?
- How does the salary expectation at the Master’s level fit in for success of raising the educational bar?
- What does the Master’s program prepare the student to do? That will help answer the question about whether to have a Master’s degree only, versus a Bachelor’s degree and a Master’s degree.

Key Priority B: Realign the HIM Associate Degree with Work Force Needs by 2016

B.1. Accredited HIM Programs at the Associate Degree Level

- Offer tracks for the Associate Degree in HIM: clinical documentation specialist, disease registry, data analyst, release of information, privacy specialist, data analysis; IT; coding and HIPAA/security.
- How would we find faculty to teach specialty tracks? Grow our own, adjuncts, group doesn’t think the proposal will lessen or improve today’s challenges.
- Question regarding the exam: Is it a generalist exam and later exams for the specialty area? How would the national (RHIT) exam reflect the specialty tracks or would there be a new credential(s) for various specializations?
- Suggest avoiding too much “fine-tuning” in naming of tracks. Coding plus one other and a generalist track should suffice. We have concern already about professional identity (this may further fragment); also concern about availability of qualified faculty (will we start seeing needing specialty qualifications for faculty teaching tracks, deepen shortage of faculty in each area?)
- I think this is a great idea because it allows me to specialize classes according to the tracks (specialized). So many students are looking to work in certain environments and this will allow them to do that such as coding.
- This sounds good on paper, but the reality is many students don’t want a specialty track; they simply want to get into the job market since coding/billing jobs are the most prevalent; it’s unlikely that other tracks will attract sufficient students. I think the associate degree programs should be kept generalized; students could then choose a non HIM baccalaureate and a
HIM master’s. Asking working adults to get an associate in a specialized track is, in my opinion, going to make marketing very difficult.

- Having an adequate # of students (for university regulations) will be a problem when offering track classes (fragmenting class size).
- When would curriculum models be available?
- What about an acute care and non-acute track or physician practice?
- The specialty tracks themselves are easy to identify – what is hard is trying to accomplish this while still meeting the domains. What will the future “core curriculum” for an AS program look like?
- Will there still be a need for a coding certificate program or will it move to a “minor” for other allied health care programs?
- Specialty tracks are the right way to go – will there be additional credentials, so employees can tell which specialty track they have completed? How will this effect people who currently hold RHIT credentials?
- In our area RHITs are assumed to be excellent coders – will adding specialty tracks detract from coding? Will there be a coding track?
- Specialty in 2nd year, could be last semester or after the 1st professional practice experience.
- Decrease the learning levels of knowledge clusters for associate degree to accommodate specializations.
- Advise students 1:1 and guide to their track.
- Community wants RHITs to move toward coding.
- Could accept 2 specialty tracks such as Coding & Medical Transcription = clinical data editor.
- Add more technologies to the Virtual Lab.
- Confuse the industry with all of our credentials; RHITs with sub-specialties.
- HIM & IT build together in a program.
- Exam domains and number of questions increase based on tracks and testing; award additional certificates.
- Is 2016 too late? White Paper is phenomenal.
- Communicate to the colleges and employers
- Campuses must be prepared with technology to support the specialty track content.
- Need evaluation process to approve various technologies for use in programs.
- Core is unique with specialties.
- Hospitals want IT liaison; post associate? BS?
- Easier to teach a Health Information Management person about IT rather than an IT person about HIM.
- Send white paper to all departments in college; need HIM faculty teaching in your program (nursing, etc.)
- Enrollment issues with tracks; what if you don’t have enough students in a track to justify; what about PPEs?

How do we sell the value proposition of this potential change in HIM at the associate degree level to employers and other stakeholders?

- Grads will be better prepared in specialized areas.
- Industry will drive what’s in the curriculum (at the local level).
- Communicate – Communicate – Communicate
- Market the change.
- Promotes a positive win/win linkage to industry for professional development.
- Collaborate – Collaborate – Collaborate
- Anticipate much discussion about the value of RHIT generalist credential.
- Anticipate political discussions on campus.

Is this Key Priority aggressive enough? Too aggressive? What would you suggest?

- Yes aggressive enough; no not too aggressive.
- Need to try something and see if it will work.
- Concern about how prescribed the number of tracks may be; needs to be defined by community of interest.
- Concern about needing high number of students to get sufficient number enrolled in each track.
- Certificate level credentials better match specializations.

B.2. The Direction of Coding Education in the US through 2016

How would associate degree really help the professional coder?

- Agree with premise that we can’t add more credits to programs.
- Better than a one year certificate. Certificate program not adequate, but some debate career track benefit. Degree’s more relevant to other career opportunities, but many are perfectly satisfied with their certificate; this goes back to community interest.
- Experience trumps certification status.
- Support for raising the bar for coders to associate.

94
• Are we placing too much emphasis on coding by suggesting an AS degree.
• CCA students want an AS degree.
• Concern that if we push AS – students will seek other certificate programs.
• Coding graduates get jobs: billing in nursing homes, physician offices, tissue banks, hospice, but not working in hospitals.
• Will physicians pay for AS degree coder?
• Would we shut the door on pre-degree certificate-business model? Would rather a coding cert program shut down in favor of quality people with associate degrees.
• Shouldn’t limit access to coding education.
• Some people who get out and do coding do come back for their AS. They see the opportunity and want to do more.
• Would AS be required for CCS & CCS-P also?
• Coding could be second year of HIT program career track.
• Model after nursing progression?
• How can we get coding viewed as an academic based function/career?
• Will degree requirement affect recruitment?
• AHIMA’s coding distance education program competes with academic programs.
• RHIT is value added to the coder, RHIT with specialization in coding.
• How do we compete with AAPC?
• AHIMA should push approved coding programs – does not push it enough
• Coding Approval Program – program directors dread the approval process, too much paper work so don’t apply.
• CCS diluted the RHIT.

Key Priority C: Prepare an Effective, Qualified Pool of HIM Faculty by 2016
• It would greatly help the faculty credentialing process if AHIMA had a master’s equivalency table to help selection committees with the masters in discipline requirements when hiring new faculty. Example: MBA with HIM post bach?? Certificate.
• Give educators a discount on registration at national convention.

What motivators can be used to coax practitioners to become educators?
• Money and time – Perhaps some disagreement with white paper that looked at “average” salaries. We want cutting edge education professionals so we should look at the salary levels associated with that level professional.
• Promote life style – schedule flexibility.
• Advise/market training programs so they know they will not have to learn to teach on their own.
• (AHIMA) offer teaching certificate for HIM.
• You have employees forever, students move on.
• More options with online capabilities.
• How do you motivate students to move forward and get PhDs when they don’t make enough money to make the leap?
• Partnering with a 4 year school to move AS students to BS students.
• Attract adjunct faculty – educational track at national convention – reel in more who are recent graduates.
• 40 empty faculty positions listed in July 2007– no central location – CareerAssist helps but ads are time-limited.
• Serve on a work group & get CEUs
• More info about education in the AHIMA media.
• Invite a practitioner to help with labs.
• Invite practitioners as substitute faculty for a class.
• Many universities require graduate faculty to hold doctorate degrees. This will be a problem for rural programs.
• Finding qualified faculty for master’s degree programs will be the biggest issue to face. One way of assisting HIM professionals in obtaining a doctorate would be to assist major universities with BSHIM or MSHIM programs to develop doctoral programs and offer two doctoral tracks: research and teaching.

What has been overlooked in the Suggested Action Steps?
• Qualified number of doctorates actually needed over the course of time.
• Create a one stop shop Web site for faculty support.
• Detailed salary survey of educators; geographic, years of experience and level of education; employment sites; full-time vs. part-time.
• Develop faculty resources.
• The inability to coin our profession.
• We can’t capitalize in detail what the HIM profession is – need elevator speech. Don’t need to define everything you do at work – a 1-2 sentence – like a mission statement “manage patient info.”

Is this Key Priority aggressive enough? Too aggressive? What would you suggest?
• No, not aggressive enough; we need a more detailed plan to truly identify needs such as the AMIA 10 x 10.
Quantity, resources and goals for doctorates; what will it cost? An organized website or communication process that tells doctoral program available; what it takes to complete a doctorate.

How are we going to solve faculty shortage in HIM education right now?
- Identify current students who may be potential candidates for faculty – maybe offer an educator pathway.
- Look at alternative sources of funding.
- Increase student research activities/involvement.
- Use other campus resources for teaching HIM core courses (team teaching).
- Create a school that trains educators for HIM.
- AHIMA does a poor job by not supporting a faculty development avenue in programming.
- Something for new instructors – there are no actual programs.
- Educate at a national convention – education track – education database.
- Where in convention is an adequate speaker preparation course?
- AOE track for encouraging teaching.
- Push intro to teaching techniques into our AS & BS programs.
- Some professional practice experiences could be in colleges/universities in academic settings for interested students.
- Job role – see viable option to be an educator.
- Profile what they’ve contributed to the HIM profession.
- Use of other disciplines.

How do we influence the next generation of HIM graduates to seek doctoral preparation?
- mandates.
- Create some kind of program that rewards outstanding students by recommending them for a scholarship based on perceived future teaching skills.
- FORE to put aside funds to meet immediate need; more scholarships.
- Options on availability of programs including financial options.
- Colleges exhibit at AHIMA and/or state meetings.
- Web site with info – add doctoral levels.
- Mentoring program.
- Publicize the urgency and need.
- Online teacher preparation class.
- Educator promotion at meetings with a ribbon.
- Media blitzes.
- Revisit CEUs for site supervisors.
- Publicize CEUs for education of faculty.
- Build research community.
- Show value – show benefits.
- Need more master’s level programs in HIM – to make jump to PhD.
- Role modeling

General Summary Comments
- Resolution to move forward on the concepts of the blueprint and develop action plans.
- This (along with the specialization of RHIT) helps to once and for all make a strong distinction between RHIA and RHIT.
- Other professionals will take over the field of informatics if AHIMA fails to raise its academic programs to a Master’s level.
- Doctors think they can learn how to code easier and faster then HIM professionals can learn the informatics side.
- Various factors contribute to students being maxed out at 18 hours per semester and still not being able to take the required specializations.
- Biggest priorities going forward:
 - Needs assessment of employers;
 - Need more faculty;
 - Expand career pathways by types of jobs